
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

A Survey of Traditional and Practical

Concurrency Control in Relational

Database Management Systems

Patricia Geschwent
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/28

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1994-006

A Survey of Traditional and Practical Concurrency Control
 in Relational Database Management Systems

Patricia K. Geschwent

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

A Survey of Traditional and Practical

Concurrency Control in

Relational Database Management Systems

Patricia K. Geschwent
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #94-006 199411 2

Table of Contents

Abstract . i

. 1 . Introduction 1

. 2 . Concepts and Terminology 6
. 2.1 Transactions 6

. 2.2 Atomicity 6
. 2.3 Serializability (or Isolation) of Schedules 7

. 2.4 Locking 13
2.5 Granularity . 15
2.6 Deadlock . 15

. 2.7 Livelock 17
. 2.8 Referential Integrity Constraints 17

. 2.9 Recovery 18

. 3 . Taxonomy of Traditional Concurrency Control Protocols 20
. 3.1 Overview and Brief History 20

. 3.2 Concurrency Control Algorithms 24
. 3.2.1 Two-phase locking 24

. 3.2.2 Timestamping 26
. 3.2.3 Certifier Methods 28

. 3.3 Summary Table of Concurrency Control Algorithms 30
. 3.4 Logical Transaction System Model 33

3.5 S u m ary . 34

. 4 . Concurrency in Practice 35
. 4.1 Structured Query Language 35

. 4.1.1 Read Uncommitted, or "dirty read" 39
. 4.1.2 Read Committed. or "cursor stability" 40

. 4.1.3 Repeatable Read 40
. 4.1.4 Serializable 42

. 4.2 Serializability in SQL-92 42
. 4.3 Granularity in SQL Locking 43

4.4 DB2 . 4 4
. 4.4.1 Locks 46

. 4.4.2 Sanctioned Lock Modes 47
. 4.4.3 Table and Tablespace Locks A9

. 4.4.4 Page Locks A9
. 4.4.5 Index Locks 50

. 4.5 Simulation of Row Level Locking 50

. 4.6 Expansion of Performance Tuning 51
. 4.7 Summary 51

. 5 . Future Trends 53
. 5.1 Relational Database Management Systems 53

. 5.2 Optimization of Locking 54
. 5.3 Continued Expansion in Field of Performance Tuning 54

. 6 . Conclusion 55

. 7 . Annotated Bibliography and Attachments 58

ABSTRACT

Traditionally, database theory has focused on concepts such as atomicity and
serializability, asserting that concurrent transaction management must enable correctness
above all else. Textbooks and academic journals detail a vision of unbounded rationality,
where reduced throughput because of concurrency protocols is not of tremendous concern.

This thesis seeks to survey the traditional basis for concurrency in relational database
management systems and contrast that with actual practice. SQL-92, the current standard
for concurrency in relational database management systems has defined isolation, or
allowable concurrency levels, and these are examined. Some ways in which DB2, a
popular database, interprets these levels and finesses extra concurrency through
performance enhancement are detailed.

SQL-92 standardizes de facto relational database management systems features. Given
this and a superabundance of articles in professional journals detailing steps for fine-tuning
transaction concurrency, the expansion of performance tuning seems bright, even at the
expense of serializabilty.

Are the practical changes wrought by non-academic professionals killing traditional
database concurrency ideals? Not really. Reasoned changes for performance gains advocate
compromise, using complex concurrency controls when necessary for the job at hand and
relaxing standards otherwise. The idea of relational database management systems is only
twenty years old, and standards are still evolving. Is there still an interplay between
tradition and practice? Of course. Current practice uses tradition pragmatically, not
idealistically. Academic ideas help drive the systems available for use, and perhaps current
practice now will help academic ideas define concurrency control concepts for relational
database management systems.

"Many serious endeavors would never get off the ground if pioneers were limited to
discussing in public only what they could demonstrate rigorously." [Papert, 51

1. Introduction

According to Jeffrey D. Ullman, two fundamental qualities set database management

systems apart from other types of programming systems: the capacity to manage persistent

data and to access efficiently large quantities of data. The ability to quickly access arbitrary

chunks of data is central to today's database management systems. Additional capabilities

ubiquituous in database management systems include:

(1) Data modeling support, by which users can view data, including dynamic schema

changes

(2) Data Definition and Data Manipulation Languages (most probably nonprocedural);

automatic query optimization

(3) Transaction Management, or the ability to provide automatic, correct and concurrent

access to the database.

(4) Security and integrity features, including authorization capabilities

(5) Resiliency, or lossless recovery capabilities in the case of system failure

Of these, concurrency is important for transaction management, integrity, and

resiliency.

Figure 1.1 illustrates transaction management and resiliency in the Database Manager

function. Data definition, data manipulation languages and data modeling support are seen

in the Database Scheme group. Security and integrity come under the auspices of the

Authorization Tables and Concurrent Access Tables.

The importance of concurrent transaction management has increased with the popularity

of relational databases and faster, cheaper hardware on which to run relational database

management systems. Relational databases are inherently slower than their predecessors,

hierarchical and network databases, because of the computational expense of joining tables

to answer queries. The development and use of SQL, a high-level, non-procedural query

and command language, has both fostered and enabled greater concurrency in database

systems. Although it was estimated in 1992 that fewer than five Fortune 500 companies

had more than 10 percent of their total corporate data stored in relational databases [Sayles

19921, relational database management systems (with some object extensions) remain the

vision of many companies today. With the exception of object-oriented articles, academic

theory and proprietary papers have focused predominantly on relational systems for at least

the past fifteen years.

There is substantial divergence, however, between the goals of academic or traditional

theory and proprietary research regarding the most important functions of a database

management system. The traditional viewpoint regards integrity as the sina aua non of such

systems. Article after published article proclaims a new, improved concurrency control

mechanism. The database industry, not surprisingly, reflects their customers' concerns by

balancing integrity concerns with performance issues. When relational database

management systems began selling, traditional locking methods were employed.

Performance concerns now mandate a greater pragmatism, with continued questioning of

how much serializability is required in a given query or database, and spawning another set

of protocols where serializability may not be as important as throughput.

This thesis proposes to survey the traditional, academic view of concurrency in

databases and contrast it with a survey of concurrency actually used by relational database

management systems, using Dl32 as the primary example. After the introduction, a

discussion of concepts basic to database concurrency is provided. Next, a brief history of

academic papers concerning concurrency, descriptions of the traditional methods of

concurrency control, and a short history of SQL and its extensions to the practical world

are presented. Then an analysis of how locking policies are actually used in several

relational database management systems today is given. Finally, some projections toward

the future are presented in this paper. At this point, a re-discussion of the term

"concurrency" seems in order.

Concurrency is a term burdened with context, carrying meaning in every branch of

applied computer science. Database concurrency is implemented when multiple transactions

or different executions of the same transaction run simultaneously. If multiple transactions

modify the same data item, the integrity of the database might be compromised if there is

not a control mechanism to order their changes safely (for example, in a bank's accounts

database). If, on the other hand, the simultaneous transactions are read-only and do not

modify the database, quick, maximum concurrent operation is possible without

compromising the integrity of the database (for example, title and author lookup in a

library's database). The efficiency of today's relational database management systems is

very dependent on the level of concurrency that it permits.

To keep the interaction of multiple transactions from compromising the integrity of a

database, we employ concurrency control protocols or schemes which can be implemented

either from the database management system or by a combination of the database .

management system and the operating system, depending on the application.

The serializable execution of several transactions ensures the integrity of today's

relational database management systems. Serializability is the main criteria used for

defining correct, concurrent programming. In essence, the concept of serializability

guarantees that a set of transactions finish executing with the same values that would be

achieved by any serial (one transaction running at a time, to completion, before another

starts) execution of the same set of transactions.

The choice of what kind of concurrency control to use is an important implementation

and performance issue as evidenced in the following quote. "According to a Sentry Market

Research study, users find that DB2 performance is 37 percent dependent on system

factors and 63 percent dependent on database and application design. . . the most common

cause of response time problems is not resource consumption, but concurrency. Designing

systems that share resources and work together smoothly is a critical objective." [Viehman

1994)

User Database

Figure 1.1. Diagram of a database system [Ullman 1988, 171

2. Concepts and Terminology

There are a number of general concepts one must understand to be able to discuss

concurrency in databases. Nine are presented here: transactions, atomicity, serializability

(or isolation), locking protocols (general case), granularity of locking, deadlock, livelock,

referential integrity constraints and recovery.

2.1 Transactions

A transaction is one execution of a program, where a program can be represented by a

single query or through embedded calls in a host language. In Figure 2.3.1, both T1 and

T2 are transactions, each comprised of two database operations (MAD, WRITE). If more

than one execution of the same program is running, each execution is a different

transaction. Transactions are comprised of small steps, such as read, write, and arithmetic

operations. When concurrency control is enforced, other small steps are needed--steps

which set and release locks, mark timestamps, or finish transactions [O'Neil 19941.

2.2 Atomicity

The principle of atomicity emphasizes transaction correctness, so that a transaction, or

group of several database operations, is taken together as a single, uninterruptable, all or

nothing, package. We assume that the small steps mentioned above are atomic, even

though the end of a time slice could occur in the middle of an arithmetic step. The step is

atomic because it occurs in a local workspace and nothing affects that space until the

transaction performing the step resumes. This operation should be transparent to the user--

if the transaction occurs, the user does not know if another transaction was executing at the

same time or not.

Why would a transaction not be atomic? In both of the following cases, it is the

responsibility of the database management system to ensure correctness.

(1) More than one transaction might occur simultaneously or be interleaved in a time-

shared system. If several &sk units were reading and writing data to or from the database at

the same time, the time slice for one transaction might end during a computation, and part

of another transaction might be performed before the first transaction completes.

(2) A transaction might be aborted and not complete at all. For example, it may have

requested data for which it lacked access privileges. Parts of the transaction have completed

but due to denied access the entire transaction cannot complete.

2 .3 Serializability (or Isolation) of Schedules

Serializability, or isolation, is the standard for ensuring atomicity. Serializability

"forces transactions to run concurrently in a way that makes it appear that they ran one-at-a-

time (serially) " [Ullman 19881. When transactions run concurrently, their operations are

interleaved. Without the property of serializability, the interleaving of operations can result

in inconsistent data. Assume two transactions, T1 and T2, shown in Figure 2.3.1. If each

accesses a single item A and adds 10 to A's value, we may say they are both executions of

the same program P where:

TI: T2: Value of A Value of A Value of A
in database in Tl's in T2's
(after operation) workspace workspace

Even though any serial execution of Tl and T2, where T1 executes in its entirety with

T2 following, or T2 executes in its entirety before T1 follows, would yield the result 25, in

Figure 2.3.1 the lack of concurrency control has allowed TI to overwrite T2's WFUTE(A),

resulting in incorrect data. This is an example of the "lost update problem." Other problems

which may occur in interleaving of transaction operations are known as the "dirty read,"

"incorrect summary," and "unrepeatable read."

Dirty reads occur when a transaction updates an item, then the transaction fails. If the

item is accessed by another transaction before this update is undone, "dirty" or "temporary"

data is read. Incorrect summary describes the situation where one transaction calculates an

aggregate summary on some records while an interleaved transaction updates the same

records. If the first transaction uses some records that have been updated and others that

have not, the calculation will be incorrect. Unrepeatable read refers to different values seen

by a transaction which reads an item before and after the item is changed by another

transaction plmasri and Navathe 19941.

A schedule is a specific order in which the elementary steps of a set of transactions

(read, write) are interleaved. The steps of any transaction must appear in the schedule in the

same order as the program executed by the transaction. If every step of one transaction

occurs before the steps of another transaction, we call the schedule serial. In Figures 2.3.2

and 2.3.3, the possible serial schedules for T1 and T2 are shown. If an interleaved

schedule is the equivalent to either serial schedule, i-e., A=15, B=125 and C=-3, or A=15,

B=85 and C=l, the interleaved schedule is serializable.

There are numerous ways to define schedule equivalence [Korth and Silberschatz

19861. Here the two main forms are discussed.

The first is conflict equivalence. In a schedule S, two consecutive operations Ii and Ij

are in conflict if they are in different transactions on the same data item and at least one is a

write. Given a schedule S, it may be transformed into a schedule S' by a series of swaps of

non-conflicting operations . S is said to be conflict equivalent to S'. A schedule S is conflict

serializable if it is conflict equivalent to a serial schedule . Figure 2.3.4 can be easily seen to

be conflict equivalent to the serial schedule in Figure 2.3.3 (T2. T1) since all the operations

of T2 can be swapped to precede all the operations of T1 . Figure 2.3.5 shows a non-

serializable schedule for TI and T2 .

T2: Database value Value in Tl's Value in T2's
(after operation) workspace workspace
A B C A B C A B C

Figure 2.3.2. Serial schedule where T1 executes first. followed by T2 .

Database value Value in Tl's Value in T2's
(after operation) workspace workspace
A B C A B C A B C

Figure 2.3.3. Serial schedule where T2 executes first. followed by T1 .

Database value Value in Tl's Value in T2's
(after operation) workspace workspace
A B C A B C A B C

Figure 2.3.4. A conflict serializable schedule for T1 and T2 .

TI: T2: Database value Value in Tl's Value in T2's
(after operation) workspace workspace
A B C A B C A B C

Figure 2.3.5. A non-serializable schedule for T1 and T2.

The second form of equivalence is that of view equivalence. Two schedules S and S'

are view equivalent if all the following requirements are met:

(1) For each data item I, if transaction Ti reads an initial value of I in schedule S 1, then

transaction Ti must also read the initial value of I in schedule S2.

(2) For each data item I, if transaction Ti produces a value I, and Tj then executes

READ(1) in schedule S 1, the same order must be followed in schedule S2.

(3) For each data item I, if there is a transaction performing a final WRTE(1) in

schedule S 1, the same transaction must perform the final WRI'IE(1) in schedule S2 [Korth

and Silberschatz 19861.

It is called view equivalence because rules 1 and 2 guarantee that transactions see the same

"view" in both schedules and rule 3 guarantees the final view of the database is the same. A

schedule S is view serializable if it is view equivalent to a serial schedule.

While both conflict and view serializability are based on the read and write operations

of transactions, view serializabilty is less stringent than conflict equivalence, i.e., conflict

serializable schedules imply view serializability, but not vice versa. Any view serializable

schedule that is not conflict serializable contains blind or unconstrained writes. A blind

write occurs when WRITE(I) is performed without a preceding READ(1).

There are some general observations still to be made regarding serializability. If random

operations on items are allowed, with scores of initial values, it is not possible in real time

to test whether multiple schedules have the same effect for all initial item values. Thus, in

practice, a commonly-agreed upon assumption regarding serializability is that ". . .values

cannot be the same unless they are produced by exactly the same sequence of operations.

Thus, we do not regard (A+10)-20 and (A+20)-30 as producing the same values" pllman

19881. Ignoring algebraic properties of transactions such as commutativity of certain

operations may cause "nonfatal" errors, i.e., force us to call a serializable schedule

nonserializable (slowing concurrency), but will not cause a "fatal" error, i.e., calling a

nonserializable schedule serializable. The traditional protocols detailed in this thesis will

allow serializability and concurrency, while guaranteeing correctness, but we will probably

never reach a state where every schedule of a collection of transactions is allowed if it is

serializable.

In practice, database management systems do not test for serializability, instead relying

on protocols to ensure serializability. For a set of N transactions, the number of serializable

schedules is N (N-1) (N-2) ...I = N!. In theory, algorithms to test for conflict serializability

use directed acyclic precedence graphs, where the set of vertices consists of all transactions

in a schedule, and the set of edges are built from the following conditions:

(1) Transaction T1 executes WRITE(I) before T2 executes READ(I)

(2) Transaction T1 executes READ(1) before T2 executes WRITEl(I)

(3) Transaction T1 executes WRI'IE(1) before T2 executes WRITE@)

To complete the testing process, one must construct the precedence graph and use a cycle

detection algorithm [Ullman 19881. If a cycle is detected, then the schedule is not conflict

serializable. If no cycle is detected, then the equivalent serial order can be achieved by

topological sorting.

2.4 Locking

Locking is the principal technique used to control concurrency. A lock is an access

privilege, which can be granted or denied by a lock manager. A lock manager is that part of

a database management system which records for a single item, I (row, table, page, or

tablespace), whether any transactions are executing on any part of I. Then, given the

particular locking protocol, the lock manager may block access to another transaction,

given the possibility of conflict. The lock manager stores current locks in a lock table,

under the data points (<item, <lock type>, <transaction>) [Ullman 1988,4701, signifying

that transaction T holds a certain kind of lock L on item I. Several transactions can.hold

certain locks on the same item at the same time. Efficient management of locks may be

achieved by, for example, using a hash table or comparable data structure with the item

field as a key.

Locks control concurrency by acting as synchronization primitives, i.e., access to data

items are done in a mutually exclusive manner. Locking of data items by itself does not

guarantee serializability. Locking protocols establish a set of rules that must be followed by

a transaction. These rules tell a transaction when it may lock and unlock each of the data

items. By following a locking protocol, a serializable schedule is ensured. For example, a

simple locking protocol would prevent the result of the Figure 2.3.1 by placing a lock on A

for TI, preventing another transaction from accessing A until T1 has finished. In a locking

protocol, we assume every transaction eventually unlocks any items it locks.

As an example of a very general type of locking, two possible scenarios follow. In

Figure 2.4.1, if T1 sets a lock, T2 is unable to access the data item (A) until the lock is

released. In Figure 2.4.2, when T2 sets a lock, T1 is unable to access the data item (A)

until the lock is released. In both cases serializability in ensured, but concurrency is

inhibited. More sophisticated locking protocols are discussed in Section 3.2.1.

TI: T2: Value of A Value of A Value of A
in database in Tl's in T2's
(after operation) workspace workspace

FG. 2.4.1. General locking protocol with T 1 executing as the first transaction.

TI: T2: Value of A Value of A Value of A
in database in Tl's in T2's
(after operation) workspace workspace

Figure 2.4.2. General locking protocol with T2 executing as the first transaction.

2.5 Granularity

Granularity is a term that describes the nature and size of units of data to which access

is controlled, typically with the use of locks. For example, in a relational database

management system, one may choose tables (coarse-grained granularity) or rows, sets of

attributes in a row, or some combination of rows for fine-grained granularity. Using coarse-

grained granularity may cut down on system overhead because less space is needed to store

locks and fewer actions with locks need to be performed. Fine granularity may increase

response time and throughput--with fewer locks on smaller pieces of data, more

transactions can execute simultaneously. One heuristic used in today's database

management systems is to set the granularity according to the average access of common

transactions in the application. If a typical transaction in a relational database management

system accesses one row, then rows become the item size. Likewise, if a typical transaction

joins tables, whole tables may become the item size.

2 .6 Deadlock

A potential problem in using a locking protocol for concurrency control is deadlock.

Deadlock occurs in a set S where two or more transactions are waiting to lock an item

already locked by another transaction in the set, as illustrated in Figure 2.6.1. Imagine two

transactions which begin operating at roughly the same time. Their significant points are:

TI: T2: - : Fic. 2.6.1
LOCK(A) LOCK@) : Operation begins, a lock on an item is

: granted to each transaction

LOCK(A) : Now each operation requests a lock on the item
: locked by the other transaction. Since neither
: transaction may proceed without the other locked
: item, deadlock ensues--they both wait forever.

UNLOCK(B)
UNLOCK(A)

Several common solutions to prevent deadlock are:

(1) A protocol which requires each transaction to request all its locks at once. The lock

manager grants all or none. The process waits if specific locks are already enforced. This

protocol would have prevented the deadlock in the previous example, but would severely

hamper concurrency.

(2) A protocol which assigns an arbitrary linear ordering to items, and forces

transactions to request locks in this order. For example, this would work in Figure 2.6.1--

assume A precedes B in the locking order. T2 would then be required to request a lock on

A before B, and find A already locked. T2 would not get to lock B, so that it would be

available for TI. Again, possible concurrent execution of transactions is greatly

diminished.

(3) A transaction timestamping (TS) protocol assigns a unique identifier to each

transaction, based on the order in which the transactions begin. The older the transaction,

the smaller the timestamp. Two schemes utilizing transaction timestamping are wait-die and

wound-wait. Assume Tj is holding a lock desired by Ti. In wait-die, if TS(Ti) < TS(Tj),

then Ti is allowed to wait, else Ti dies and is restarted later with the same timestamp.

Hence, the older transaction waits on a younger transaction while a younger transaction

requesting an older transaction's item is aborted and restarted. In wound-wait, if TS(Ti) <

TS(Tj), Ti wounds Tj (i.e., aborts it). Tj restarts later with the same timestamp. If TS(Ti) >

TS(Tj), then Ti is allowed to wait. In this scheme a younger transaction waits for an older

one, while an older transaction can preempt a younger transaction.

(4) No waiting and cautious waiting schemes do not require timestamps. A no waiting

algorithm will abort and restart (after a time delay) any transaction unable to obtain a lock,

regardless of whether deadlock actually occurred or not. Cautions waiting only allows

transactions to wait on transactions that are not blocked [Elmasri and Navathe 1994, Korth

and Silberschatz 1986, O'Neil 19941.

Another approach to deadlock handling is detection. This general protocol does nothing

to prevent deadlock, but periodically examines lock requests and checks for deadlock.

Imagine a waits-for graph, with nodes representing transactions and arcs signifying a

transaction T1 is waiting to lock item I, on which T2 holds the lock. Every cycle indicates a

deadlock; if there are no cycles, the graph is deadlock-free. If a deadlock is discovered, at

least one of the deadlocked transactions will be aborted and restarted, its effects on the

database cancelled.

2.7 Livelock

Livelock is another problem that can arise when a locking protocol is used. Livelock is

the database equivalent of starvation in operating systems. It occurs when a set of

transactions are waiting for access to an item, and as described previously in deadlock or

timestamp resolution, one transaction keeps getting bumped to the back of the line.

2.8 Referential Integrity Constraints

A key advantage of relational database management systems is their support of integrity

constraints. These constraints may be as simple as enforcing data types for data items, or

more to the point for this survey, involve the relationship between tuples in one relation and

tuples in another relation. Of course, tuples in one relation may have many relationships

with multiple other relations. Concurrency implications become considerable since a lock

on a tuple in one relation expands to cover the related tuples.

Structured Query Language (SQL), the standard non-procedural query language used in

today's relational databases, supports explicit definition of such relationships by assertion

of foreign keys, or links to the unique primary keys of other relations. Assertions are made

at the creation of a table and can be updated or changed by the owner or DBA at will.

2.9 Recovery

A database management system is responsible for recovering from failure, whether

hardware- (e-g., system crashes) or software-based (e.g., transaction errors). Typically, a

log buffer is shared by all transactions. In concurrent systems, if a transaction is aborted or

rolled back, it is necessary to compel any transaction which depends upon that transaction

to perform the same action. Consider a schedule which contains transactions T1 and T2. T1

writes a value for item A, which T2 reads. If T1 fails at this point, it will be rolled back to a

point before WRITE(A). T2 must also be rolled back to the point before it executed

READ(A). The circumstance in which one transaction failure leads to a series of transaction

rollbacks is known as cascading rollback, and may occur under two-phase locking and

timestamp-based protocols, as described later in this survey. Cascading rollback is

inexpedient because it may negate a noteworthy amount of work.

Taxonomy of Concurrency Control

Pessimistic Optimistic (Non-Locking)

I
Locking Non-Locking Pure

I
Broadcast

I
2PL 5 Color Altruistic

I
Protocol

Timestamping

Basic Conservative Strict
2PL

Non-strict Strict
(non-recoverable) (recoverable)

Figure 3.1 Taxonomy of Concurrency Control

PESSIMISTIC concurrency controls assume there will be contention for data, and prevents conflict by
locking items in use or by executing transaction operations in the order of the transactions' timestamps.

OPTIMISTIC concurrency controls assume data contention will be small, and arbitrates possible
conflict by checking a series of rules before the transaction is allowed to complete.

3. Taxonomy of Traditional Concurrency Control Protocols

Figure 3.1 illustrates the taxonomy of traditional concurrency control protocols. The

difference between the major categories, pessimistic and optimistic, is based on a differing

philosophy as their names imply. Pessimistic techniques assume a worst case scenario:

every piece of data examined by a transaction might be required by some other concurrent

transaction, therefore it needs to be locked or checked before committing. Optimistic

techniques assume a best case scenario: no piece of data examined by a transaction is

required by another concurrent transaction; therefore the transactions can run to completion,

and is then checked to see whether conflict occurred. If so, the transaction simply aborts

and starts again. More details concerning each specific protocol are contained in Sections

3.2 through 3.2.3, after a short chronology of concurrency protocols.

3 .1 Overview and Brief History

Pessimistic controls automatically assume there will exist contention for data and

prevent conflict by locking items or executing transaction operations in the order of the

transactions' timestamps. Optimistic controls assume data contention will be small, and

arbitrate possible conflict by checking a series of rules [O'Neil 19941.

Both types of concurrency control ensure serializability, or that access to data items is

carried out in a mutually exclusive manner. Pessimistic concurrency controls include

locking and timestamping. Locking pessimistic concurrency control requires each

transaction to secure access rights to data before beginning an operation. Shared (read) and

exclusive (write) locks follow a locking protocol, which places restrictions on the number

of possible serializable schedules, as well as requiring a directed acyclic graph algorithm

for deadlock detection. Concurrency is reduced; deadlock is possible and handled by

prevention or detection algorithms.

In a standard two-phase locking protocol (2PL), lock and unlock requests are issued in

a growing phase and a shrinking phase, that is, all locks are acquired before any are

released. In 2PL, two shared (read) locks can be held at the same time, otherwise the first

transaction holds an exclusive-mode lock so that it can both read and write a data item.

Subsequent exclusive and shared lock requests must wait until the currently-held lock

releases, i.e., when the data item is no longer accessed; this is different from releasing

locks when an item is last accessed, which may not ensure serializability. Although lock

conversions, or upgrading from a READ LOCK to a WRITE LOCK status are allowed, the

degree of concurrency provided is low. The protocol assumes problems will occur and

seeks to prevent them. With locking, the number of possible schedules is reduced.

Processing overheads are high, because keeping track of locks and the queue waiting for

data access is difficult. Storage overhead is increased because of deadlock. If deadlock

occurs, the system must roll back one of the two transactions. In order to perform a

rollback it must have stored information to enable rollback. Variations of 2-phase lochng

(2PL) such as strict, altruistic and five-phase locking have been proposed, but because their

key tenet remains serializability, concurrency is still lower than it might be [O'Neil 19941.

Timestamping protocols are also pessimistic. A unique timestamp is given to each

transaction before it starts execution by the system clock or a logical counter. The

timestamps of the transactions determine the serializability order. If transaction A starts

before transaction B, the serial order is transaction A followed by transaction B. This serial

order implies that transaction A should never see transaction B updates and A should never

be permitted to update anything already seen by B. As will be seen in optimistic

concurrency control, rules specify the order of transactions. There are serial schedules

possible under this protocol that are not possible under locking, but the converse is also

true. In timestamping protocols, processing overheads are high, and can be difficult to

sustain, based on the clock use and possible synchronization problems. There does not

appear to be a storage overhead in one timestamp protocol that is better than the others

[Bernstein and Goodman 198 1, Korth and Silberschatz 19861.

Validation or certifier techniques use optimistic concurrency theories. Optimistic

concurrency control is characterized by the assumption that most transactions will be

conflict free; since there will not be much data contention, holding locks wastes time.

Optimistic protocols were chiefly used for query intensive systems, but are now being used

in distributed databases, with a mixture of locking/timestamping protocols poksenbaum et

al 1987, Yu and Dias 19931.

Under optimistic concurrency control, each transaction performs updates on a local

copy of data; the transaction is validated by ensuring that the original data is not being

accessed simultaneously by a concurrently executing transaction. If validation is

successful, the data is written from local to permanent storage. Optimistic concurrency

controls monitor a system instead of defining it as pessimistic protocols do; concurrency is

maximized and response time is augmented. While cascading rollbacks are impossible since

actual writes to the database occur after the transaction commits, aborted transactions and

transaction starvation are real possibilities. Like pessimistic concurrency control's deadlock

algorithms, optimistic concurrency control requires starvation-prevention algorithms. It is

superior for query intensive databases, although pure optimistic concurrency control is not

good in high contention, user-updated frequently systems [Bernstein and Goodman 198 1,

Small et al. 1992, Korth and Silberschatz 19861. Pure optimistic concurrency control only

aborts transactions at commit time, while broadcast optimistic concurrency control aborts

transactions as soon as conflict is detected. [Date with Darwen 1992, Yu and Dias 19921.

The above description of concurrency control techniques illustrate the variety of

methods that have been proposed. A brief history of this development is presented next.

Until 198 1, locking was the unquestioned concurrency control protocol in databases. A

proposal was made then for a single-site family of non-locking concurrency controls,

which were labelled optimistic. Incremental transaction numbers validated claims to ensure

serializability [Kung and Robinson 198 11. In the same year, Bernstein and Goodman

[Bernstein and Goodman 19811 concluded that this new approach would not work for

distributed systems because it would not handle the loads.

By 1987, timestamps were gaining acceptance as a value-added benefit to optimistic

concurrency control, allowing it to function in a distributed database system [Boksenbaum

et al. 1987, Bassiouni 19881.

Additional proposals have posited a large buffer, so data from aborted transactions

could be accessed during rerun, thus controlling resource contention due to aborted

transactions [Yu and Dias 19921.

Since late 1992, the academic trend appears to be towards hybrid concurrency control,

or a mixture of optimistic and pessimistic protocols. Researchers have simulated

performance of different concurrency control models and concluded these new techniques

offer benefits for high levels of data contention. Methods such as allowing aborts only

during the early stages of a transaction's execution, and then waiting for locks to be

released were proposed pranaszek et al. 1992, Yu and Dias 19931.

Present day database management systems may allow no choice between the protocols

discussed in the following sections. Some systems, such as Gemstone, advertise

applications that allow the DBA to specify optimistic or pessimistic concurrency controls.

The choice should end up being a function of the types of queries commonly used, because

no clear advantage has been shown for any of the following protocols to be discussed.

Each allows different types of schedules. Each allows some schedules that the other does

not, so the ultimate choice, when there is one, should depend on the necessary balance of

concurrency and throughput [O'Neil 1994, Elmasri and Navathe 19941.

3.2 Concurrency Control Algorithms

The following sections describe in more detail three well-known concurrency control

techniques in current database management systems. These protocols often form the default

concurrency controls in practical relational database management systems. Each of the

following sections describes a concurrency algorithm. Following these sections is a

summw table for each protocol which also lists their advantages and disadvantages. The

last section describes how each concurrency control protocol fits within a general logical

transaction system model. The information in the remainder of this section is adapted from

Elmasri and Navathe 1994, Korth and Silberschatz 1986, Kung and Robinson 1981,

O'Neil 1994 and Ullman 1988. Additional sources are cited as necessary.

3.2.1 Two-phase locking

Two-phase locking, one of the most prevalent concurrency control protocols, ensures

transaction isolation by locking data items. The two-phase locking protocol is both simple

and popular. Two requirements enable this protocol to guarantee serializability: (I). all locks

precede all unlocks; and (2) the scheduler checks only for legality--that is, that two

transactions cannot hold locks on the same item simultaneously. If these requirements are

met, the transactions are permitted to proceed. The phases refer to the locking and

unlocking phases. The lock point is the moment a transaction obtains the last of its locks. If

we order transactions in the order they reach lock point, the order must be a serial schedule

with the arcs in the precedence graph conforming to this transaction order.

In many transactions, while the value of an item is required, the changing of that item

by the transaction is not required, i.e., it can just be read. This necessitates two types of

locks: Read (or shared) and Write (or exclusive) locks.

Read or shared locks: Any transaction needing to read an item I executes RLOCK(I),

which prevents other transactions from writing to I (WLOCK(1)) until I is unlocked. One

or many other transactions can read I while the RLOCK(1) is in effect, and RLOCK(1) can

be permitted as long as there is not a WLOCK(1) being held. If only one transaction holds

RLOCK(1) and wishes to upgrade to WLOCK(I), it may. UNLOCK(1) removes

Write or exclusive locks: Any transaction needing to change the value of an item I must

obtain a write-lock, or WLOCK(I). Every other transaction is barred from obtaining a

RLOCK(I) or WLOCKO while this WLOCK(1) is in effect. UNLOCK(1) removes

The lock compatibility matrices seen in Figure 3.2.1.1 illustrate these rules.

Lock Held By
By Another
Transaction

Lock Held By
By Same
Transaction

I Read Write I Read Write

Read I Yes No Read I NIA* No
Lock I Lock I
Requested I Requested I

Write I No No Write 1 Maybe**NIA*
I

* NIA because of Assumption 2
** If no other transaction held a READ lock, the answer would be YES. If another

transaction held a WAD lock, the answer would be NO until that transaction yielded its
READ lock.

Figure 3.2.1.1. Two phase lock compatibility matrices.

Two phase locking assumes that each locked item will eventually be unlocked, a

transaction does not try to lock an item it already holds the same lock on, and that a

transaction does not try to unlock an item it does not hold a lock on. Every lock does not

need to be an exclusive lock because some transactions will not change the value of an

item, so read locks are available. A transaction may upgrade the type of lock it holds on an

item, e.g., from a shared or read-lock to an exclusive or write-lock, as soon as no other

transaction holds a read-lock on that item. Strict two-phase locking demands that a

transaction will not be written into the database until it has reached its commit point and

wilI not release any locks until after the commit point.

3.2.2 Timestamping

In timestamping, each transaction is assigned a unique timestamp which is used by the

protocol to guarantee that conflicting operations are executed in the order of the

transaction's timestamp. There are two general ways that timestamps can be issued to

transactions: either they are required to pass through the scheduler, which keeps a count of

the number of transactions it has scheduled, and assigns the next number to each new

transaction, or the database management system may use the value of the machine's internal

clock at the time a transaction initiates. If the database is distributed over numerous

machines or is running on a machine which contains more than one processor (several

versions of the scheduler are possible), a unique suffix of a fixed length is chosen for each

processor, and appended to the timestamp issued by the processor, in order to identify the

processor. Also, care must be taken that counts or clocks of each processor remain.

synchronized.

It is possible to describe how timestamps force transactions that are not aborted for

failure of protocols to run as if they were serial in the same ways one can describe other

protocols--from most restrictive to least--one could have a timestamp-based protocol which

distinguishes many kinds of access, such as incrementation (least restrictive), one could

have one which does not distinguish between reading and writing, but just locks the

database transaction by transaction (most restrictive). Here we discuss a timestamp-based

protocol based on readhrite locking.

In this scenario, each item in the database is given two timestamps, the read-time, or

highest timestamp held by any transaction which has read the item, and the write-time, or

the highest timestamp held by any transaction which has written the item. Using these

timestamps, the following are checked.

if X = READ and T >=tw, set read time to t if t> tr OR
if X = WRITE, t >=tr, and t>=Tw, set write time to t if t>tw.

if X = INRlTE and tr <=t < tw, do nothing (execute).

if X = READ and T < tw, abort the transaction OR
X = WRITE and t< tr, abort the transaction

Some phases are illustrated in the following figure:

. READ(A) RT=200
. READ(B) RT= 150

. mAD(C). RT=175
. WRTTE(A) w = 2 0 0
. INRlTE@) WR=200

. WRITE(C) WC= 150
(T2 aborts)

WRITE@). m = 1 7 5

Figure 3.3.2.1. Pessimistic Timestamping.

In Figure 3.3.2.1 the transaction time of T1 is 200, T2 is 150, and T3 is 175. Initially,

A, B, and C are assumed to have initial READ- and WRITE-TIMES of 0. In this example,

T2 is forced to abort rather than perform a WRITE-TIME with timestamp 150, and READ-

TIME: of 175. Conversely, the value of WRITE(B) T3 is discarded because although the

READ-TIME@) is 150, less than ts = 175, T3's WR=175 is less than Tl's WR=200.

As with loclung protocols, there are additional rules for a strict timebased protocol. All

updates can be performed only in the workspace, and written into the database after the

transaction commits. Writes are written into the log, which is copied to stable storage,

thereupon written into the database. As in locking, a commit record is written on the log

between the stages. Transaction T must be given a lock on A which will hold between the

time the WRITE-TIME is changed for I, and the time it writes the value, and this lock may

be held for a long time. An additional consideration with this protocol is that chechng of

timestamps must be accomplished prior to the commit point, because abort cannot occur

after commit. So, when a transaction T reads or writes an item I, it must check the write-

time of I when T reads I, and also check the read-time of I when T writes I in its

workspace. If the protocol is strict, cascading rollback is avoided, and furthermore, the

schedule is said to be recoverable since no transaction T1 in S commits until all transactions

that have written an item that was read by T1 have committed. This is in contrast to an

optimistic strategy which checks the READ-TIME or WFXIE-TIME of I (if T wrote I) at

the time T commits.

Assumptions made for timestamp use include that no two transactions receive the same

timestamp, equivalent serial order is the order of the transactions' timestamps, and a

transaction cannot read the value of an item that was not written until after the transaction

executed, i.e., transaction T1 with timestamp t l cannot read an item with write time of t2 if

t2 > tl. A transaction cannot write an item if the item has its previous value read or. written

at a later time, i.e., transaction T1 with timestamp tl cannot write an item with read-time t2

if t2 > t l or write-time t2 > tl. t l must abort, and restart with a new timestamp.

3.2.3 Certifier methods

Certifier methods are also known as optimistic or validation methods. This protocol

assumes that no conflict is going to occur and proceeds with the transaction using a local

copy. Then the protocol validates that the assumption was correct. If not, the transaction is

aborted and restarted.

In the certifier protocol, each transaction, Ti, executes in three different phases: Read,

Validation and Write. These phases are described below.

Read phase. During the read phase, Ti executes. Values of data items are read and

stored in local variables. Write operations are done on these local variables, the "real"

database is not updated yet, because no conflict is anticipated.

Validation phase. Ti performs a validation test to check if it can copy its local

variables to the database without violating serializability. A transaction requires three

timestamps, one for each of the above phases.

Three timestamps are necessary for Ti.

A. Startvi) denotes the time when Ti starts executing;

B . Validation(Ti) denotes the time when Ti finishes the read phase, and begins the

validation phase. This timestamp determines the serializability order. There are three

rules for validation:

1 . Finish(Ti) < Startvj). If Ti completes executing before Tj starts its read

phase, then serializability is assured;

2 . Ti n Tj = 0. If Ti and Tj share no elements, then serializability is assured;

3 . Start(Tj) < Finish(Ti) < Validationvj). If Ti completes its write phase before

Tj starts validation, the writes of Ti and Tj are not overlapping. Because Ti's

writes do not affect Tj's read, and because Tj can not affect Ti's read,

serializability is maintained;

4. Write(Ti) n Read(Tj) = 0. Given different operations, if Ti and Tj share no

elements, then serializability is assured.

C. Finish(Ti) denotes the time when Ti has finished its write phase and releases its

locks. In contrast to strict timestamping protocols, these locks are held a short time,

only long enough for other items written by I to have checks made on their read

times.

Write phase. If validation is successful, then the values in the local variables are

written to the database. Else, Ti is aborted.

Optimistic concurrency controls use timestarnping to determine validation order and

believe it is inefficient to prevent conflict that may not occur.

3 .3 Summary Table of Concurrency Control Algorithms

Table 3.3.1 restates some details of the concurrency control algorithms already

discussed, as well as listing their advantages and disadvantages. As before, this

information is extrapolated from Elmasri and Navathe 1994, Korth and Silberschatz 1986,

Kung and Robinson 198 1, O'Neil 1994 and Ullman 1988.

3.3 Summary Table of Concurrency Control Protocols

2 PHASE LOCKING PROTOCOL
One of the most common concurrency
control protocols ensures transaction
isolation by locking data items.

Methods:
Guarantees serializability by:
1 . requiring that all locks precede all

unlocks
2. The scheduler checks that two

transactions do not hold locks on the
same item simultaneously

Types of locks:
READ locks (RLOCK)
1. prevent other transactions from

writing to the held item until
RLOCK is lifted

2. >1 transaction can hold RLOCKS at
one time

3. cannot obtain a RLOCK if a WRITE
lock is in effect

WRITE locks (WLOCK)
1. any transaction wishing to change a

value must obtain a WLOCK
2 . only 1 transaction may hold a

WLOCK on a specific item at any
time

3. if only one transaction holds a
RLOCK on an item, and wishes to
change the item, the lock can be
escalated to a WLOCK

TIMESTAMPING PROTOCOL
Each transaction is assigned a unique
timestamp to guarantee that conflicting
operations are executed in the order of
the transaction's timestamp.

Timestamps are issued by the scheduler
assigning the next number to each new
transaction, or the database management
system may use the value of the
machine's internal clock when a
transaction initiates.

Each item in the database is given two
timestamps
READ TIMESTAMP (tr)
1 . highest timestamp held by any

transaction which has read the item
WRITE TIMESTAMP (tw)
1. highest timestamp held by any

transaction which has written the item

Rules to be checked:
if X=READ and
1. T >= tw, set read time to t if t > tr
2. T < tw, abort the transaction

if X=WRITE and
1. t >= tr and t >= Tw, set write time to

t i f t > t w
2. tr <= t < tw, execute
3. t < tr, abort the transaction

OPTIMISTIC PROTOCOL
Assumes no conflict will occur and
proceeds with the transaction using a
local copy. A validation phase checks to
see if the assumption is correct. If not,
the transaction is aborted and restarted.

Divides every transaction execution into
three different phases:

READ PHASE:
1. Ti executes. Values of data items are

read and stored in local variables.
Write operations are performed here.

VAL,IDATION PHASE:
1. Using three timestamps, Ti performs

a validation test to check if it can copy
its local variables to the database
without violating serializability.
Start(Ti), when Ti starts executing
Validation(Ti) when Ti finishes the

read phase and begins validation phase
Finish(Ti), when Ti finishes its write

phase.

Rules for serializability:
1 . Finish(Ti) < Start(Tj).
2. Ti intersection Tj = 0.
3. Start(Tj) < Finish(Ti) <

Validation(Tj).
4. Write(Ti) intersection Read(Tj) = 0.

WRITE PHASE
1. If validation is successful, the values

in local variables are written to the
database

STRICT 2-PHASE LOCKING
requires:
1. A transaction will not be written into

the database until it has reached its
commit point

2. A transaction will not release any
locks until after the commit point
(this avoids cascading rollbacks)

Advantages:
1. Distinguishes between reads and

writes and their effect on the
database

2. Guarantees serializability regardless
of the types of transactions which
could operate concurrently with a
given transaction

3. Good for update-intensive
applications because it is safe

Disadvantages:
I . Inhibits concurrent execution

because of locking overhead
2. May lock an item no other

transaction needs
3. Inefficient in query-intensive

applications because of locking
overhead, possibility of deadlock
and waits for locked data.

STRICT TIMEBASED PROTOCOL
requires:
1. All updates are performed only in the

workspace
2. All updates are written into the

database after the transaction
commits. Cascading rollback is
avoided

1 . Different from locking, because the
blocked transaction aborts rather than
waits for access

2. >1 transaction can read the same item
at different times, conflict-free

3 . Enhanced concurrency over phased
locking because transactions do not
block each other needlessly

1. Inefficient where aggressive locking
makes sense (where >1 transaction
executing simultaneously require the
same item). A large amount of
rollbacks will occur

2. Timestamp checking done prior to a
cornmit point, because you cannot
abort after a commit

Updates are already placed in the
database only after the transaction
commits, so a strict case is not
necessary.

1. Does not inhibit access prior to
validation phase because emphasizes
arbitration of conflict between
transactions, not prevention

2. High concurrent access possible
3. Superior for query intensive

databases or other systems with a low
conflict rate

1. Not efficient in high contention,
frequent-update systems.

2. May abort more transactions than
either previous method because
checks timestamps later.

3. Not as intuitively understandable as
the others.

3.4 Logical Transaction System Model

This section describes how each concurrency control protocol fits within a general logical

transaction system model, illustrated in Figure 3.4.1.

restart delay

access queue
access

ABORT / RESTART

COMMIT -

blocked queue

BLOCK
4

Figure 3.4.1. General Logical Transaction System Model. Adapted from Salem et al, 1994, 140.

Figure 3.4.1 represents a general logical transaction system model. In the case of

locking protocols, the actual Concurrency Control diamond should move between the

access queue and access object. If access is denied, a diagonal line could be drawn

from access object to BLOCK. The transaction would move from blocked queue to

ACCESS, and finally to COMMIT.

In a timestamping protocol, the actual Concurrency Control diamond stays where it

is. A transaction would go through the immediate access queue, access object, then

move through Concurrency Control. If the timestamp rules were not broken, the

transaction would commit. Otherwise, the transaction would move through the ABORT /

RESTART path.

In optimistic concurrency protocols, the actual Concurrency Control diamond

moves to the left, immediately preceding the COMMIT. A transaction would go through

the immediate access queue, access object, then move through Concurrency

Control. If validation is not successful, the transaction would move through the ABORT

/ RESTART path.

3.5 Summary

The previous sections have discussed three of the most commonly used concurrency

control protocols in relational database management systems today. Both pessimistic and

optimistic protocols concentrate on maintaining serializability, so that the end product of

concurrent transactions is correct.

In the next section, Concurrency in Practice, discussion centers on SQL-92 and DB2,

and their focus on performance as well as correctness.

4. Concurrency in Practice

4.1 Structured Query Language

SQL, dubbed "Intergalactic Dataspeak" in 1990 by database guru Michael Stonebraker,

is the cement in the foundation of modern Relational Database Mangement Systems. SQL is

the standard language for all types of databases [Korth and Silberschatz 1986, Melton

1993al. While vendors may add extensions aimed at their niche, SQL-compliance enables

the porting of database systems from platform to platform, vendor to vendor, as least

common denoninator among the 50-some commercial DBMSs. The ubiquitous quality of

SQL allows for more open systems in the database realm, connecting to servers, GUIs and

other database management systems. In most database management systems, SQL also

provides the means for concurrency control. Because concurrency standards defined by

ANSI and OSI for SQL are later detailed as the concurrency standards actually used by

database management systems, a brief history of the language and standards process is in

order [Melton 1993a and 1993b, Melton and Kulkarni 1992a and 1992b, Sayles 1992,

O'Neil 19941.

Developed in 1972 at IBM Research in Yorktown Heights, N.Y., or, depending on the

citation, in 1974 at IBM's San Jose Research Laboratory, it was first called SEQUEL,

became SEQUEL12 by roughly 1976, and SQL (Structured Query Language) by the late

1970s. In 1976, the San Jose Research Laboratory published a paper which described a

prototype database management system, System R. System R attempted to extend the use

of SEQUEL from a simple language enabling query capabilities to one which supported

concurrency and system recovery. SEQUEL'S expansion included data definition,

manipulation and control facilities, precursors to SQL's Data Definition Language, Data

Manipulation Language and commands for explicit control of transactions. All locking was

automatic [Astrahan et al. 19761.

Following the expansion of SEQUEL by IBM, in 1980 the Oracle DBMS launched the

first SQL-based product to be commercially widespread. Initially, IBM developed and sold

SQL/DS for a DOSNSE environment, but it was available by 1982 for a VM/CMS

environment. MVS had a version of SQL called DB2, which split from SQL in its

implementation of features. Sybase SQL Server, an SQL-based implementation of the client-

server model, debuted in 1986, and Digital Fiquipment Corp added an SQL interface to

RdbNMS in 1986, thereupon gaining a large share of the VAWVMS SQL market.

Critical incompatibilities between SQL dialects were bound to occur because of the lack

of a standard. Recognizing this, after a series of false starts, the American National

Standards Institute (ANSI) and International Organization for Standardization (ISO) both

chartered committees to standardize SQL, incorporating features encompassing the least

common denominator of the diverse SQL-based vendors, about 1984. The specifications

admittedly contained less information than required by a working database system, but

were necessary because little common ground was discovered between the products. ANSI

published the first SQL standard in 1986, followed by ISO's version in 1987, now known

as SQL-86. Both agreed to thoroughly revise once the basic standard was set.

In 1989, ANSI and IS0 published revised standards, known as SQL-89. ANSI

published a complementary standard, Database Language Embedded SQL, because SQL-

89 included embedded SQL in an appendix, rather than an integral part of the document.

IS0 included an addendum regarding referential integrity features; they did not publish a

complementary standard.

In 1992, ANSI and IS0 published revised standards for SQL. SQL-92 attempted to

make SQL up-to-date with various products and specify common implementation features

to bring together incompatible, diverse vendor features. SQL-92 was a response to the need

for increased functionality and more explicitly and completely specified SQL-89's

standards. Many of the features delineated therein mirrored de facto features, or those

already implemented by leading vendors. Wi le SQL-92 lacks standards for triggers, rules,

indexes and additional data types, it does specify degrees of isolation for concurrency

controls, and remains the de jure standard for SQL until SQL3, now in committee, is

published. Reportedly, SQL3 is concentrating on object orientation (one part of the

committee is working on MOOSE, or Major Object-Oriented SQL Extensions), advanced

relational aspects, triggers, a call-level interface, and contains partitions that SQL-compliant

vendors may use or not, depending on their focus.

In SQL-89, referential integrity was limited to defining primary and foreign keys, along

with rules to restrict operations calling for violations of these restraints. SQL-92 provides

syntax that allow referential constraints to cause DELETES and UPDATES to cascade to

other rows. SQL-92 also improved support for multiple environments, including

distributed databases, and clienthewer including remote connection facilities.

SQL-92 not only specifies these advanced features but also increases the flexibility in

standard 2-phase latch protocols. A latch is a short-term exclusive lock taken by a

transaction when it reads or writes a data item, to guarantee atomicity. After data access is

complete, 2PL protocols continue to hold the lock, i.e., ensuring it is a long-term lock,

held until the transaction aborts or commits. Lower isolation levels allow short-term locks,

or latches, for lock release immediately after the operation is performed.

Although serializable transactions can be guaranteed by a scheduler mandating the two-

phase locking (2PL) protocol, since 2PL retains all acquired locks until a commit or

rollback by the transaction, concurrency is greatly diminished. As more concurrent

transactions are added, lock conflicts happen, and more transactions find themselves in a

WAIT state. The number of deadlocks, aborts and consequent retries increases. In some

cases, increasing the number of concurrent transactions reduces the number of transactions

that are active, and not blocked in the WAIT state, reducing the effective concurrency level.

Thus, the CPU is not used fully because a high level of concurrency is impossible.

Given the high-pressure placed upon quick execution of today's database management

systems, professionals espoused diluting locking protocols to improve performance. SQL-

92 offers isolation levels to achieve this cause. Prior to executing an SQL statement

initiating a transaction, a SET TRANSACTION statement sets the isolation level, e.g., SET

TRANSACTION SERIALIZABLE in an ad hoc query, or E m C SQL SET

TRANSACTION SERIALIZABLE in embedded SQL. Additionally, there are provisions

for declaring subsequent transactions will be READ ONLY or READ IVRITE. Each level

codifies the degree to which one transaction's operation is affected by concurrent

transactions by specifying phenomena which may occur during concurrent SQL

transactions. Each level is more restrictive, with transactions executing at isolation level 4

being serializable [Celko 1992, O'Neil 19941. The DBA may also simply allow the

system's default locking capabilities to run, but the presence and use of these isolation

levels in current database management systems indicates their general use. Relational

database mangement systems may implement these isolation levels in any manner they

wish, from traditional 2PL for isolation level 4, and in fact there are different proprietary

solutions. Compliance with SQL-92 is an assertion that these isolation levels are

achievable, not that traditional concurrency protocols are unavailable. The isolation levels

are discussed in more detail following Figure 4.1.1, but are listed here:

1 . Read Uncommitted, or "dirty read;"

2. Read Committed, or "cursor stability;"

3. Repeatable Read,

4. Serializable.

Figure 4.1.1 defines which locks are held long-term for each isolation level. Different

locking behavior is exhibited for rows in tables and predicates in WI3EB.E clauses. "Notice

that it is possible for a scheduler to support concurrently executing transactions of different

isolation levels in the same transactional workload" [O'Neil 1994,680-68 11.

Write locks on
rows of a table
are long term

Read Uncommitted NIA
(dirty reads) (read only)

Read Committed YES
(cursor stability)

Repeatable Read YES

Serializable YES

Read and write
Read locks on locks on predicates
rows of a table (in WHERE clauses)
are long term are long term

NO NO

YES NO

YES YES

Figure 4.1.1. Locking Behavior of SQL-92 Isolation Levels.

4.1.1 . Read Uncommitted, or "dirty read"

This isolation level supports no long-term. locks. Dirty reads may occur when

transaction T1 changes a row and T2 reads Tl's change before Tl's commit. If T1

performs a rollback before commit, the row T2 has read never really existed. If TI

eventually commits, the values T2 has read still might not have fulfilled atomicity

requirements, and may be incorrect. In a large, constantly changing database, where

absolute accuracy is not essential, this may not be a significant error, and the database

administrator may decide to go for speed. Transactions at this isolation level are not

permitted by SQL-92 to perform updates. READIWRITE is not possible at this level by

definition, so "dirty writes" can not occur. A dirty write would occur if TI-) could

be overwritten by T2(WIUTE) where T2(READ) < Tl(READ) [Celko 1992, O'Neil 1994,

Melton and Kulkarni 1992231.

4.1.2. Read Committed, or "cursor stability"

The second row of Figure 4.1.1 shows that while write locks on rows of a table are

long term, read locks on rows of a table and read and write locks on WHERE predicates

are short term. A transaction at this isolation level cannot read or write to rows written by

another transaction until the other transaction commits. Unlike the previous level, where

reading uncommitted (dirty) updates was possible, here it is not. This level will allow the

"nonrepeatable read" anomaly to occur, where a transaction, TI, opens a cursor on a set of

rows, fetches and reads rows. The read lock is held only while the cursor is in a row, and

released immediately afterward. If TI reads the rows a second time, some of the values

may have been changed by another transaction. DB2 and other database management

systems have offered this level as a feature for some time, calling it cursor stability, in the

interests of concurrency. In practice, a type of read lock is held on rows selected by the

cursor. When the cursor moves past a row, the lock is released unless the row has been

updated, in which case a write lock is imposed.

Also, what if TI depended on the relationship between two rows? T1 reads Row 1, T2

changes the value of Row 2 and commits, and TI now reads the changed value of Row 2.

A more serious anomaly occurs when transaction T1 reads >= one row, using them to

update or insert another row into the same table. T2 concurrently performs a similar

operation. The interleaving of the transactions does not match serial execution. Although

SQL-92 enables these faults, it is assumed database administrators (DBAs) will be aware of

possible faults, and balance their importance against production needs [Celko 1992, O'Neil

1994, Melton and Kulkarni 1992bl.

4.1.3. Repeatable Read

This isolation level supports 2PL for locks on rows of tables, and solves all the

problems mentioned for isolation level 2. Long-term locks are held on all accessed records.

Phantom updates remain a problem in this level. A phantom update occurs when

transaction T1 reads n rows which satisfy a search condition; T2 generates additional

row(s) which satisfy the search condition T1 used; If T1 repeats the search, a different set

of rows is found. For example,

TI: SELECT NAME FROM STUDENTS WHERE HOME.STATE = "OHIO"

RESULT: N names of students

1"2: INSERT INTO STUDENTS VALUES ("CmOL WILZ", 1 1 1-1 1-1 1 1 1, "OHIO")

TI: SELECT NAME FROM STUDENTS WHEFXi HOME.STATE = "OHIO"

RESULT: N+1 names of students

4.1.4. Serializable

This isolation level supports everything isolation level 3 does, plus adds predicate

locking, which eliminates phantom updates. A basic problem with 2PL is that prior to this

point it has been assumed that locking table rows is enough. Serializability demands that all

data accessed by a specific transaction be included in the precedence graph. In other words,

in isolation level 4 serializability demands long-term read and write locks on predicates.

Some systems lock tables to achieve long-term read and write locks on predicates, using

coarse granularity.

SQL-92 contains a rule that if a database management system desires SQL-92-.

compliance but does not wish to support one of these isolation levels, it must yield one at

least as secure as the one missing. It is apparent in advertisements in professional

magazines that these standards are taken seriously. Most database managements systems

cite their outright compliance with SQL-89 or SQL-92 [Celko 1992, O'Neil 1994, Melton

and Kulkarni 1992bJ.

4.2 Serializability in SQL-92

It is difficult not to notice that SQL-92 encourages some of the very problems cited as

an argument for serializability, i.e., dirty reads and unrepeatable (or nonrepeatable) reads.

SQL-92 enables the DBA to make a rational decision concerning the importance of

correctness versus concurrency.

4 . 3 Granularity in SQL Locking

How important is the granularity at which SQL obtains locks? Granularity defines the

level at which locking is accomplished, be it row or page, and is often cited in the articles

detailing how to tweak databases for performance. Automatic loclung may occur at the

tablespace, page, table, or row level. Although the DBA may specify one of these in some

cases, SQL may upgrade the granularity level depending on the transaction. Section 4.3

goes into greater detail regarding advice to professionals for optimization of locking

granularity.

A tablespace in a database management system is the "basic allocation medium . . . out

of which tables and indexes as well as other objects requiring disk space receive their

allocations. A tablespace corresponds to one or more operating system files and can span

disks." [Salem et al. 1994,4561. Most database management systems contain several

tablespaces, including one called SYSTEM, which contains system catalog, index and

authorization tables. Creating different tablespaces allows DBAs to load balance disk

drives, and to bring down part of the system while allowing the remaining database to

remain on-line. An optional clause exists in SQL to allow the DBA, creating a table or

index, to specify the tablespace from which disk space will be appropriated. If none is

specified, the tablespace defaults to the user's default tablespace. The SQL command to

create a tablespace, while specifying contained file sizes in megabytes is:

CFEATE TABLESPACE TSPACE2 DATAFILE 'FTLE1' SIZE 200M,
DATAlTLE 'FTLE2' S E E 300M;

Pages are physical sequences of disk storage, equal-sized, and are utilized from a main

memory buffer shared by all concurrent transactions. A page may contain the contents of

part of a table (or tablespace), or an entire table (or tablespace). Its size is determined by the

database management system; the optimizer's purpose in a database management system is

to minimize disk page accesses.

What defines a table in a database management system? Most likely, it is comprised of

an entity, or class, along with its attributes, including a "primary key," or unique identifier

for each specific instance of an entity. At a university, for example, "student" or

"professor" would be a separate entity in a relational schema. Attributes such as "Social

Security number" and "name" would serve as the primary key, and other attributes such as

"address," "phone," or "salary" become accumulate to hold additional data. Locking at the

table level would hold an entire table hostage, as well as any related tables defined in

foreign keys (the primary key of another table, referenced by a table as an integrity

constraint). A row is a specific instance in a table--in this case, it would be a certain person

and their pertinent data. An example of each follows:

CREATE TABLE STUDENT
(SSN CHAR(10) NOT NULL,
NAME CHAR(20),
GRAD-YEAR INTEGER,
MAJOR CHAR(10)
PRIMARY KEY (SSN)
FOREIGN ISEY (NAME) REFERENCES APPLICANT)

Rows in this table might include:
"111-11-11 1 I", "JAME DOE", 1994, "SAN"
"222-22-2222", "JOHN SMITH", 1995, "ACCT"

As mentioned in the granularity section, the less restrictive the locking mechanisms

employed, the greater the possible concurrency. As such, tablespace is the most restrictive,

then table or page, then row [Celko 1992, O'Neil 1994, Melton and Kulkarni 1992'01.

4.4 DB2

Current articles abound in professional journals concerning fine-tuning database

performance. Tradeoffs between concurrency and performance are both expected and

implemented to a degree unrecognized in textbook theory. Articles detail ways of balancing

concurrency with the overhead required to support integrity and isolation, including

management of locking conflicts and resolving deadlocks and timeouts to avoid degradation

of performance because of unrealizable resources, and excessive CPU or virtual storage

utilization.

DB2 is a well-known database management system which is SQL-92-compliant, since

it provides for the necessary isolation levels. DB2 also attempts to meet the current

definition of open standards. It runs on top of numerous operating systems, is accessible

through different proprietary middleware, and can be matched with a number of servers.

While DB2 contains default values for transaction management, it also allows the Database

Administrator to tweak these values for better execution through the DB2 system, the

database and the application.

In DB2, locking contention may occur for batch or online processes and will be

exacerbated in systems requiring concurrent batch and online processing. Locks consist of

a size, mode and duration. More than one type of lock may exist for a specified user in a

specific tablespace, depending on the mode of lock. For example, locks might be held

simultaneously on the tablespace, table and page for a specific tablespace [for this whole

section: Donoghue 1992, Mullins 199 1, Ingrassia 1991, Fosdick and Garcia-Rose 1992,

Fratarcangeli 1992, Bischoff and Yevich 1992, Backs 19911.

Sections 4.3.1 through 4.4 specify and define the lock sizes, scope and mode in DB2.

Figure 4.3.2.1 illustrates the varying types of locks an SQL statement can use, and section

4.5 discusses the future expansion of performance tuning in DB2.

4.4.1. Locks

Lock size and scope describe the locking granularity employed by DB2. SQL sets the

lock size by default; if the DBA specifies a certain isolation level, the granularity at which

locks are set may be different than the default granularity

Lock Scope
Size

Tablespace Locks the entire tablespace

Partition Locks only a partition. At this time, is used solely by the recover utility, but
future releases expect all processes to use partition locks on indices and data
components

Table Locks a single table, but only if the tablespace is partitioned

Page Locks a single page in a tablespace

Subpage Locks one subpage contained in an index. If the value of subpage = 1, the entire
page will be locked

4.4.2 Sanctioned Lock Modes

Each lock size utilizes a mode while it is in force, so these modes may be used with

lock sizes of tablespace, partition, table, page or subpage. Sanctioned lock modes in DB2

include:

Mode Meaning

IS Intent Share. Page locks in use on individual pages. The lock holder has S

locks on the pages, and other users may read and update.

S Share. Table or Tablespace lock is in use; cannot be updated, for read-only

use.

IX Intent Exclusive. Page locks in use on individual pages. The lock holder may

have S, U, or X locks on pages. Other users may read and update.

U Update. Table or Tablespace lock is in use; may be read by anyone, but only

the user holding the lock can update.

SIX Share with Intent Exclusive. Page locks in use on individual pages. An IX

locks already exists, and an S must be acquired. The lock holder may have

share S, U or X locks on the pages. Other users may read, but no user other

than the holder may update.

X Exclusive use for update of table or tablespace. Table or Tablespace lock is in

use, with no other users permitted.

(Only Dynamic SQL)

Col-1, Col-2 PAGE Indexspace
From Table-Y

Where Col-A :=Value
Lock

I s Lock For Update of Co1-3 I
Skeleton Cursor

I PAGE
Lock

Tablespace

Figure 4.4.2.1. Varying Types of Locks Used by an SQL Statement

[Bischoff and Yevich 1992,27-381.

4.4.3. Table and Tablespace Locks

An SQL statement acquires a table or tablespace lock whenever it accesses a table or

index, including a tablespace lock on all indexes for all tables in a tablespace. Furthermore,

if the lock's mode contains an "I", signifying "intent," page locks will also be acquired

during execution. An acquired lock's mode is the highest needed to bolster any SQL

statement in the plan. Figure 4.4.3.1, placed at the end of this section, illustrates how

division of tablespaces can enhance concurrency.

If ACQUIREOJSE) is specified when the query plan is bound, table or tablespace locks

are procured when the first SQL statement for a table is issued; only the mode required for

that statement is used. The lock may be upgraded upon the issuance of another SQL

statement requiring a higher mode. If ACQUIRE(ALL0CATE) is specified when the plan

is bound, table or tablespace lock acquisition is mandated for all tables in the plan, at the

time of plan allocation. Use of RELEASE (DEALLOCATE) is mandatory to bind the plan,

thus freeing table or tablespace locks when deallocation of the plan occurs.

RELEASE(COMMIT), used at bind time for a plan, allows SQL to free table or tablespace

locks only upon issuance of a COMMIT or ROLLBACK, directly through SQL or

indirectly through some proprietary relational database management systems.

Under some relational database management systems, table or tablespace locks may be

held for an extended period by specifying ACQUIRE(ALL0CATE) or

RELEASE(DEALL0CATE) at bind time.

4.4 .4 . Page Locks

Page locks can be one of three different modes: S, U, or X (see section 4.3.2). S

confines other users to read-only use of a given page. S or U locks may be acquired by

other users. In SQL, using a SELECT or FETCH command without UPDATE procures an

S lock; an S lock is released when: (1) a TSO process issues an SQL COMMIT or

ROLLBACK is issued; (2) an IMS process issues another SYNCH or ROLB; (3) in CICS,

when a synch point call occurs; (4) when a noncursor, non-update SQL statement

completes; or (5) when the cursor position moves onto a new page without update, or the

cursor closes. It is possible to hold locks over COMMIT and ROLLBACK processes in

several cases, but in any case, the lock will be held on a page until DB2 gets a new lock on

a new page.

U permits users to UPDATE. Other users can acquire only S locks. In SQL,using an

UPDATE or DELETE statement without a cursor procures a U lock.

X permits users to UPDATE in an exclusive mode. The table or tablespace is

completely locked to other transactions.

4.4.5. Index Locks

Index locking may occur at the page or subpage level. Table or tablespace locks set by

an SQL statement are used equally on all indexes for all tables in a tablespace.

4.5. Simulation of Row Level Locking

Given high concurrency requirements and lack of row locking in DB2, many articles

recommend simulating row-level locking. Dummy columns are added to increase a row

length, so it is larger than half a page; when the row size is greater than 2K, each page will

contain one row. One advantage of this procedure is seen in data synchronization processes

where one process has a well-defined domain, but must allow other transactions to use

other domains. Another is seen when a transaction updating one row does not lock more

than that row.

4 . 6 Expansion of Performance Tuning

In a survey conducted in 1992 by Howard Fosdick and Linda Garcia-Rose, a quarter of

the 545 respondents from metropolitan-area companies, comprising approximately 5,000

DB2 production applications, planned to install DB2 performance tuning tools. This

percentage was matched by plans to acquire SQL Optimization tools.

Performance tuning tools extend performance optimization choices to DBAs and

programmers. Professionals will shortly be required to understand differences between

previously defaulted tablespace scans, indexed access, and simple and partitioned

tablespaces, as well as concurrency controls. [Fosdick and Garcia-Rose 1992, Backs

199 1, Bischoff and Yevich 19921.

4 .7 Summary

In Section 3, Taxonomy of Traditional Concurrency Control Protocols, serializability

was demonstrated to be the most important consideration of traditional concurrency control

theory. Earlier in this section, Concurrency in Practice, the concept of serializability is still

important, but performance considerations intrude. Professional SQL standards committees

have codified de facto proprietary standards which allow weakened serializability, in the

form of SQL-92's isolation levels 1 ,2 and 3. Absolute serializability is assured in SQL-

92's isolation level 4. In DB2, this level of isolation employs a 2 phase locking protocol, in

a merger of traditional and practical concepts.

The next section, 5, Future Trends, expands a bit on section 4.6, and theorizes about

other possibilities in relational database management systems. Division 6 will further

discuss the relationship between traditional and practical concurrency controls in relational

database management systems, and draw some conclusions based on this work.

Example 1, One Tablespace
I

(defines ownership of tables, table columns,
integrity constraints, indexes,user
authorizations, etc. Sample list at right.

Table 1

xxxx xxx(x),
XXX xxxxx,
XXX xxxxx

Table N

xxxx xxx(x),
XXX xxxxx,
XXX XXXXX

Example 2, Two Tablespaces

The System Catalog contains 16 files that define a system's
authorizations, defi~tions, usage and views at a given time.
They are: SYSACCESS, SYSCATALOG,
SYSCHARSETS, SYSCOLAUTH, SYSCOLUMNS,
SYSDBSPACES, SYSDROP, SYSINDEXES,
SYSOPTIONS, SYSPROGAUTH, SYSSYNONYMS,
SYSTABAUTH, SY SUSAGE, SYSUSERAUTH,
SYSUSERAUTH, SYSUSERLIST, AND SYSVIEWS.

This type of "one tablespace fits all" structure denotes an
inexperienced DBA. If a table is locked for data access, the
whole system may be locked, through escalating locks.

71 71
xxxx xxx(x), xxxx xxx(x),
XXX XXXXX, XXX XXXXX,

XXX XXXXX XXX XXXXX

This is the more standard way of specifying tablespaces, with the System Catalog in one tablespace, and user
tables in another. Note that placing multiple tables in one tablespace conserves resources and may speed access,
but reduces possible concurrency if the tablespace is locked.

Example 3, Multiple Tablespaces

(defines ownership of tables, table columns,
integrity constraints, indexes,user

This sample shows tablespaces arranged for maximum
optimization under locking. Every table is in a separate
tablespace. Although locking is an expensive operation, made
cheaper by taking table or tablespace locks rather than page
locks, concurrency is reduced.

XXX xxxxx,

XXX xxxxx

Figure 4.4.3.1 Examples of Tablespace Division

5. Future Trends

As stated, there is divergence between academia and proprietary research concerning

the future of relational database management systems. While the issues of atomic

concurrency vs. performance will continue to be debated and implemented through

successive issues of SQL committees and database management systems, there are some

indications of the direction of relational database management systems in general, as well as

concurrency optimization suggestions and mandates for performance tuning.

5 . 1 Relational Database Management Systems

". . . Relational technology is the strategic direction in virtually all Fortune 500

companies, and DB2 is a fait accomplis in the MVS-based relational world (some predict

that by the end of 1993, nearly 10,000 DB2 licenses will exist worldwide)" [Sayles 19921.

Despite claims of slow access and bad response time in relational systems, there are many

success stories. Jim Melton states, 'I. . . It's like these people have never heard of the

hundreds of banks using relational systems that run hundreds of queries per second on

gigabytes (or even terabytes) of data." (Melton 1993).

The push toward object-oriented database management systems is hampered by lack of

standards among the many small companies producing the technology. The reluctance of

recently-become relational businesses to switch again has improved the position of the

relational database management system companies, who have satisfied their customers by

adding object extensions onto relational systems, for example, Oracle7 includes object-

oriented extensions and supports C++ pratarcangeli 19921.

Although some applications require total object-orientation, it is likely that the hybrid

database management systems will proliferate [Cattell 199 1, Elrnasri and Navathe 1994,

Herlihy 1990, Melton 1993b3.

5 .2 Optimization of locking

Query optimization, which occurs at bind time and seeks to optimize the query path for

SQL statements, is such a part of relational database management systems that is difficult to

envision the problems their lack would create. Given faster hardware, it is only a matter of

time before companies test locking optimizers. The tests may prove that the overhead is still

too expensive, but an expert system approach to concurrency control, given a mixture of

pessimistic and optimistic controls, is a fascinating offshoot of today's hybrid concurrency

control protocols and SQL's in-place query optimization.

5 .3 Continued Expansion in Field of Performance Tuning

As many computer professionals become more specialized than in the past, it is not

inconceivable that certifications equivalent to CNEs (Certified Novel1 Engineer) will

become necessary. Given the sleight of hand performance tuning tricks written about now,

as performance tuning tools increase, expertise will be at a premium. As relational

databases take over rnission-critical applications, performance becomes more important,

and there will always be limitations to hardware solutions. Given that one reason relational

database management systems have succeeded is their ability to be part of an open systems

framework, rather than be based on specific hardware configurations, software twealung

will continue--as will the database industry's attempt to catch up to actual use requirements.

6. Conclusion

Academic and traditional theories regarding concurrency have centered on a narrow

band of concepts that assume serializability is a necessary factor for transactional

concurrency in a relational database management system. Journals and textbooks

acknowledge that using concurrency controls inhibits concurrency, but are unwilling to

acknowledge that other performance factors may be equally compelling, depending on the

specific database application.

Perhaps this view is a holdover from the days when databases were always an

expensive proposition. Businesses which needed absolutely correct information were

pioneers in the purchase of database management systems, and their needs drove the

industry. With the advent of inexpensive hardware and user-friendly software, database

management systems came within the reach of anyone with a need. If one takes an

analytical look at the needs of some applications, serializability is not always necessary.

Performance, on the other hand, sells systems and jobs.

ANSI and OSI have codified real needs, balancing concurrency with performance, in

SQL-92, which supports all serializable and some non-serializable schedules. Figure 6. l a

shows the different levels of possible concurrency. Serializable schedules, ones that are

supported by traditional protocols, are shown on figure b. Non-serializable schedules, such

as those which support lost updates, dirty reads, nonrepeatable reads and incorrect

summaries, are excluded. Figure c shows the SQL-92 isolation levels that are non-

serializable such as dirty reads and non-repeatable reads or cursor stability, and figure d

shows all the schedules that SQL-92 supports.

Academia and traditional computing gave relational database management systems their

start. Until the middle of the last decade, locking protocols such as 2-phase locking were

practical for all types of concurrency. However, the increasing use of relational systems

and the particular burden they place on supporting concurrent transactions while executing

computationally expensive joins places system performance close to concurrency in terms

of importance. W i l e 2PL is still in use, its use is increasingly reserved for a smaller set of

operations, those demanding absolute serializability.

Relational database management systems are a new technology. The notion of

serializability comes from a time when only serial execution was possible. Serializability is

not deterministic since there are N! possible serial schedules for N transactions, and every

one of them qualifies as correct according to the traditional viewpoint. Although almost to

date, practical relational database management systems have leaned on academic or

traditional concepts, maybe it is possible for academic theory to learn from actual

practitioners now. Is there a better idea than serializability to use as criteria for a good

system? Is it possible for a combination of performance and serializability to replace plain

serializability? Until performance and serializability work hand in hand, practitioners will

continue to finesse performance issues and the practical will continue to shift away from

conventional wisdom.

SQL-92 Isolation Levels

Figure 6.la All Histories

b. Serializable
Schedules

c. Non-Serializable
Schedules

d. SQL-92 and
Practical Concurrlt
Use All Levels

7, Annotated Bibliography

Agrawal, R. and D. J. DeWitt . 1985. "Integrated concurrency control a d recovery
mechanisms: design and performance evaluation," ACM Trans. Om Database Systems
10:4, pp. 529-564.

Backs, William. 1991. "DB2 Free Space," Database Programming & aesign, June, pp. 22-
30. Details how free space is important to accommodate growth, -tigate locking
concurrency problems and improve performance. Well written, a n d a good precursor to
Bischoff and Yevich's later article.

Bacon, Jean. 1993. Concurrent Systems, Addison-Wesley Publishing Company.

Badrinath, B .R. and Ramamfitham, Krithi. 1992. "Semantics-Based C20ncurrency Control:
Beyond Commutativity," ACM Transactions on Database System*, vol. 17, NO. 1,
March, pp. 163-199.

Bassiouni, M.A. 1988. "Single-Site and Distributed Optimistic Protocols for Concurrency
Control," IEEE Transactions on SofhYare Engineering, Vol. 14, No. 8, A ~ S S ~ , pp.
1071-1080. Focuses on pure optimistic concurrency (as opposed to schemes which
integrate it with pessimistic), to increase its concurency and improve perfomance.
Concludes timestamps for both fully and partially duplicated database networks will
enhance performance and reduce overhead.

Bell, David and Grimson, Jane. 1992. Distributed Database Systems, ~ d d i ~ 0 ~ - w e s l e y
Publishing Company.

Bernstein, Philip A. and Goodman, Nathan. 198 1. "Concurrency C0n&~1 in Distfibuted
Database Systems," Computing Surveys, Vol. 13, No. 2, June, pp. 185-221. Presents
distributed database concurrency control; decomposes concurrency control into read-
write and write-write to find a basis for comparison between the ~ 2 0 proposed
concurrency control algorithms proposed in the literature at this time; includes good
summaries. At this early date, concludes optimistic concurrency Will not work for
distributed systems without a lot of revision.

Bernstein, P.A. and Goodman, N. 1983. "Multiversion concurrency control--theory and
algorithms, ACM Trans on Database Systems 8:4, pp. 463-483.

Bernstein, P.A. and Goodman, N. 1984. "An algorithm for concurrency control and
recovery in replicated, distributed databases," ACM Trans. on Database Systems 9:4,
pp. 596-615.

Bernstein, P.A., Hadzilacos, V. and Goodman, N. 1987. Concurrency Control and
Recovery in Database Systems, Addison-Wesley, Reading Mass. Contains extensive
references on concurrency control and distributed systems.

Bernstein, Arthur J. and Lewis, Philip M. 1993. Concurrency in Programming and
Database Systems, Jones and Bartlett Publishers.

Bhargava, Bharat K. 1987. Concurrency Control and Reliability in Distributed Systems,
Van Nostrand Reinhold Company.

Birman, Kenneth P. 1993. "The Process Group Approach to Reliable Distributed
Computing," Communications of the ACM, Vol. 36, No. 12, December, pp. 36(17).

Bischoff, Joyce and Yevich, Richard. 1992. "The DB2 Dilemma: Managing Locking
Contention," Database Programming & Design, May, pp. 27-38. Specifics on how to
tweak better performance in DB2 by innovative definitions for tables and indexes;
includes an overview of locking protocols, and a small section on latches.

Boksenbaum, Claude, Cart, Michele, Ferrie, Jean, and Pons, Jean-Francois. 1987.
"Concurrent Certifications by Intervals of Timestamps in Distributed Database
Systems," IEEE Transactions on Software Engineering, Vol. 13, No. 4, April, pp.
409-4 18. Proposes new certification method for optimistic concurrency, timestamps, to
make it viable in a distributed database system; allows a chronological commit order
and dependency graph proof.

Cattell, R.G.G. 1991. Object Data Management, Addison-Wesley Publishing Company.

Casanova, Marco Antonio. 198 1. The Concurrency Control Problem for Database
Systems, Springer-Verlag.

Celko, Joe. 1992. "An Introduction to Concurrency Control," DBMS , September, pp. 70-
83. Gives overview of SQL-92 isolation standards, and sometimes facile explanations
of concurrency in general. Celko is a member of the SQL standards comittee.

Ciciani, Bruno, Dias, Daniel M., Yu, Philip S. 1992. "Analysis of
Concurrency-Coherency Control Protocols for Distributed Transaction Processing
Systems with Regional Locality," IEEE Transactions on Sojiware Engineering, Vol.
18, No. 10, October, pp. 899-913.

Dan, Asit. 1992. Performance Analysis of Data Sharing Environments, The MIT Press.

Date, C.J. 1993. "A Matter of Integrity, Part III," Database Programming & Design,
December, pp. 19-21. The father of relational database theory insists that SQL-89 and
SQL-92 are ridden with inaccuracies and arbitrary complexities, as well as including a
diatribe against object-oriented databases.

Date, C.J., with Darwen, Hugh. 1992. Relational Database Writings 1989-1991,
Addison-Wesley Publishing Company, pp. 485-5 16.

Davidson, S.B. 1984. "Optimism and consistency in partitioned distributed operations on
relational views," ACM Trans. on Database Systems 7:3, pp. 38 1-41 6.

Donoghue, Michael. 1992. "Committing to Commit," Database Programming & Design,
October, pp. 48-56. Discusses running batch and online programs concurrently in
DB2, including restarting after failure.

Eich, Margaret H., and Wells, David L. 1988. "Database Concurrency Control Using Data
Flow Graphs," ACM Transactions on Database Systems, Vol. 13, No. 2, ~une , pp.
197-227.

Elmasri, Ramez, and Navathe, Sharnkant B. 1994. Fundamentals of Database Systems.
The Benjamin/Cummings Publishing Company, Inc. This books is a highly-readable
survey of database concepts. Sections are included on SQL, Design, System
Implementation and Advanced Data Models.

Fosdick, Howard and Garcia-Rose, Linda. 1992. "DB2: Growing in Expertise and
Mission-Critical Applications," DBMS, pp. 76-80. This interesting examines survey
results from DB2 users in metropolitan areas. Includes sections on methodology,
numbers and size of respondents, responsibilities, performance problems and DB2 add-
on products. Shows cross-section of actual DB2 users, as well as making predictions
about the importance of performance tuning in the future.

Franaszek, Peter and Robinson, John T. 1985. "Limitations of Concurrency in Transaction
Processing," ACM Transactions on Database Systems, Vol. 10, No. 1, March, pp.
1-28. Defines the effective level of concurrency given the pairwise probability of
conflict among transactions with the total number of concurrent transactions. Shows
results for standard locking, strict priority scheduling, and optimistic methods.
Proposes three new concurrency control methods, which partially include optimistic
methods.

Franaszek, Peter, Robinson, John T., and Thomasian, Alexander. 1992. "Concurrency
Control for High Contention Environments," ACM Transactions on Database Systems,
Vol. 17, No. 2, June, pp. 304-345. Summarizes current pure optimistic methods as die-
based (transaction restarted only when reaches commit and validation is unsuccessful)
and kill-based (all transactions conflicting with one which is successful restart
immediately). Simulates performance of different concurrency control models, and
concludes new techniques offer benefits for high levels of data contention.

Fratarcangeli, Claudio. 1992. "Locking and Referential Integrity in Oracle," DBMS,
December, pp. 8 1-99. This article discusses the relationship between integrity
constraints and serializability, as well as general concurrency control issues. Includes
SQL referential integrity examples, as well as deadlock considerations.

Haerder, T. and Reuter, A. 1983. "Principles of transaction oriented database recovery--a
taxonomy," ACM Computing Surveys 15:4, pp. 287-217. Organized conceptual
discussion of various transaction-oriented recovery protocols. Includes a taxonomy of
logging techniques. Purpose of paper is to establish a cogent terminology for this topic.

Herlihy, Maurice. 1990. "Apologizing Versus Asking Permission: Optimistic Concurrency
Control for Abstract Data Types," ACM Transactions on Database Sysems, Vol 15,
No. 1, March, pp. 96-124 .

Horner, Donald R. 1989. Operating Systems Concepts and Applications, Scott, Foresman
and Company.

Hsu, Meichun and Zhang, Bin. 1992. "Performance Evaluation of Cautious Waiting,"
ACM Transactions on Database Systems, Vol. 17, No. 3, September, pp. 477-512.

Ibaraki, Twoshihide, Kameda, Tiko and Minoura, Toshimi. 1987. "Serializability with
Constraints," ACM Transactions on Database Systems, Vol. 12, No. 3, September,
pp. 429-452.

Ingrassia, Frank J. 1991. "The Day RDS Stood Still," Database Programming & Design,
March, pp. 54-61. Discusses the evolution of DB2's optimizer, which determines
selection of access path. Details how performance may be improved through use of
tablespace, index scans, and buffer pools.

Janson, Philippe A. 1985. Operating Systems: Structures and Mechanisms, Academic
Press Inc.

Kiernan, Casey. 1993. "Treating Them Like Guests," Database Programming & Design,
Vol. 6, No. 7, July, pp. 32(7).

Kirkwood, John. 1992. High Performance Relational Database Design, Ellis Honvood.

Korth, Henry R., and Silberschatz, Abraham. 1986. Database System Concepts, Second
Edition, McGraw-Hill, Inc. Standard, somewhat outdated, text on databases, focusing
mainly on relational model. Appendices on hierarchical, network and object-oriented
systems. Tends to go into great detail on traditional concepts, with few real-world
examples.

Kung, H.T., and Robinson, John T. 1981. "On Optimistic Methods for Concurrency
Control," ACM Transactions on Database Systems, Vol. 6, No. 2, June, pp. 2 13-226.
This is the primary document of optimistic methods for the single site model. Presents
the general problem clearly, and proposes families of nonlocking concurrency controls.
Uses incremental transaction numbers instead of timestamps.

Lynch, Nancy A. 1983. "Multilevel Atomicity--A new Correctness Criterion for Database
Concurrency Control," ACM Transactions on Database Systems, Vol. 8, No. 4,
December, pp. 484-502.

Manber, U., and Ladner, R.E. 1984. "Concurrency control in a dynamic search structure,"
ACM Trans. on Database Systems 9:3, pp. 439-455.

Melton, Jim. 1993a. "Intergalactic Dataspeak?," Database Programming & Design,
January, pp. 35-37. Summarizes the history of SQL and its standardization. Delineates
where ANSI and OSI documents differ in some cases, and cites exact titles and
publication citations for versions of SQL standards. Explains how U.S. National
Institute of Standards and Technology and Federal Information Processing Standard
Publications specify vendor conformance.

Melton, Jim. 1993b. "The Structure of SQL3," Database Programming & Design, July
1993, pp. 65-67. Describes partitioning of SQL3 document, factors determining
publication date, and how to order copies of SQL-92 and SQL3.

Melton, Jim, and Kulkarni, Krishna. 1992a. "Is the SQL Standard Too Large?," Database
Programming & Design, July pp. 21-26. Seeks to explain how 600 page SQL-92 is
really only 47% larger than the 120 page SQL-89 should have been, had it covered
standards in sufficient detail. Includes comparison chart of selected features and SQL-

86, SQL-89 and SQL-92 number of pages for each feature, as well as analyzing degree
of similarity between successive standards.

Melton, Jim, and Kulkarni, ISrishna. 1992b. "Out With the Old," Database Programming
& Design, August, pp. 26-27. Followup to "Is the SQL Standard Too Large?"
Continues discussion of new features of SQL-92, including additional relational
operators such as SET DIFFERENCE, SET INTERSECTION, join variants,
predicates and data types. Discusses increased orthogonality of SQL-92 (where
capabilities employed in one part of the language cannot be used in ostensibly
equivalent parts).

Mullins, Craig S. 1991. "Mastering Disaster Recovery," Database Programming & Design,
January, pp. 42-49. Focuses on details of creating a disaster recovery plan. Discusses
logs for tablespaces and other recovery mechanisms.

O'Neil, Patrick. 1994. Database Principles, Programming, Perfomzance , Morgan
Kaufmann Publishers, San Francisco, California. An outstanding reference. Extremely
up-to-date. References current products as practical examples of theory.

Papadimitriou, Christos. 1986. The Theory of Database Concurrency Control, Computer
Science Press.

Papadimitriou, C.H. and Kanellakis, P. C. 1984. "On concurrency control by multiple
versions," ACM Trans. on Database Systems 9: 1, pp. 89-99.

Ries, D.R. and Stonebraker, M. 1979. "Locking granularity revisited," ACM Trans. on
Database Systems 4:2, pp. 2 10-227.

Salem, Kenneth, Garcia-Molina, Hector, and Shands, Jeannie. 1994. "Altruistic Locking,"
ACM Transactions on Database Systems, 'Vol. 19, No. 1, March, pp. 1 17-165. This
well-written and interesting paper proposes "altruistic locking," an extension to two-
phase locking, for the case of long-lived transactions (LLTs). LLTs retain database
resources for long periods of time; traditional locking greatly inhibits concurrency.
Special locking rules are proposed, and altruistic locking is guaranteed to be simple to
use and serializable. The term "altruistic" is used because transactions which yield locks
early do not benefit from this release--other concurrently executing transactions will.

Sayles, Jonathan. 1992. "Universal Dataspeak Becomes a Relational Reality," Database
Programming & Design, August, pp. 39-45. Focuses on Information Builders Inc.
(IBI), whose FOCUS provides open connectivity and interoperability to various types
of computers, using EDAfSQL. EDAISQL is a suite of client/server products that
access nonrelational and relational DBMSs on different networks; general discussion is
provided of EDA/SQL benefits, including APYSQL calls.

Shasha, Dennis. 1993. "Database Tuning: Principles and Surprises: Strategies for Database
Optimization," Dr. Dobbs Journal, Vol. 18, No. 4, April, pp. 532(3).

Silberschatz, A. and Kedem, Z. 1980. "Consistency in hierarchical database systems," J.
ACM 27: 1, pp. 72-80.

Singhal, Mukesh and Shivaratri, Niranjan G. 1994. Advanced Concepts in Operating
Systems: Distributed, Database, and Multiprocessor Operating Systems, McGraw-Hill,
Inc.

Small, Carol, Poulovassilis, Alexandra and Derakhshan, Mir. 1992. "The Role of a
Repository Manager in Deductive Database Systems," in Expert Database Systems,
Academic Press Limited, pp. 83- 1 16.

Talen, Waldemar. 1993. "Client-Side Performance Tuning," DBMS , Vol. 6, No. 12,
November, pp. 62(5).

Tate, Bruce, Malkemus, Tim and Gray, Terry. 1993. Comprehensive Database
Pe$omance For OSQ 2.0's Extended Services, Van Nostrand Reinhold.

Thomas, R.H. 1979. "A majority consensus approach to concurrency control," ACM
Trans. on Database Systems 4:2, pp. 180-219.

Ullman, Jeffrey D. 1988. Principles of Database and Knowledge-Base Systems, Vol. I,
Computer Science Press.

Viehrnan, Peggy. 1994. "24 Ways to Improve Database Performance," Database
Programming & Design, Vol. 7, No. 2, February, pp. 32(7).

Vogt, F.H., ed. 1988. Concurrency 88: International Conference on Concurrency,
Hamburg, FRGT, October 18-1 9, 1988 Proceedings, Springer-Verlag .

Wertz, Charles J. 1993. Relational Database Design: A Practitioner's Guide, CRC Press.

Wolfson, 0. 1987. "The overhead of locking (and commit) protocols in distributed
databases," ACM Trans. on Database Systems 12:3, pp. 453-471.

Yasin, Asad M. 1993. "Data Conversion and Audits," Database Programming & Design,
February, pp. 25-27. Able argument for data audits, or a methodical process of
classifying and validating data, both usable and nonusable, and their components.
Proposes data audits should be performed before conversion, and on a regular basis
thereafter, just as accountants verify monetary transactions. Purpose of audit: identify
possible errors, thus certifying data is accurate and trustworthy.

Yonezawa, A., Ito, T., eds. 199 1. "Concurrency: Theory, Language, and Architecture,"
UK/Japan Workshop, Oxford, UK, September 25-27, 1989, Proceedings,
Springer-Verlag .

Yu, Philip S., and Dias, Daniel M. 1992. "Analysis of Hybrid Concurrency Control
Schemes for A High Data Contention Environment," IEEE Transactions on SofhYare
Engineering, Vol. 18, No. 2, February, pp. 118-129. Contends that optimistic
concurrency control is subject to resource contention because of aborted transactions.
Proposes a large buffer, so data from these transactions can be accessed during rerun.
Proposal ensures pure optimistic concurrency control which aborts at commit, performs
better than broadcast optimistic concurrency control, which aborts as soon as conflict is
detected.

Yu, Philip S., and Dias, Daniel M. 1993. "Performance Analysis of Concurrency Control
Using Locking with Deferred Blocking," IEEE Transactions on Software Engineering,
Vol. 19., No. 10, October, pp. 982-995. Proposes a combination of pessimistic and
optimistic methods, whereby optimistic concurrency control allows aborts only during
the early stages of a transaction's execution, and then waits for locks to be released.

TRADITIONAL VIEWS OF DATABASE CONCURRENCY

VS. PRACTICAL CONCURRENCY

IN RELATIONAL DATABASE MANAGEMENT SYSTEMS:

A SURVEY

Department of Systems Analysis

Patricia K. Geschwent

Fall, 1994

Table of Contents

I. Introduction

11. Concepts and Terminology
2.1 Transactions
2.2 Atomicity
2.3 Serializability (or Isolation) of Schedules
2.4 Locking
2.5 Granularity
2.6 Deadlock
2.7 Livelock
2.8 Referential Integrity Constraints
2.9 Recovery

111. Taxonomy of Traditional Concurrency Control Protocols
3.1 A Brief History
3.2 Overview
3.3.1 Two-phase locking
3.3.2 Timestarnping
3.3.3 Certifier Methods

IV. Practical Concurrency
4.1 Structured Query Language

4.1 .1 Read Uncommitted, or "dirty read"
4.1.2 Read Committed, or "cursor stability"
4.1 .3 Repeatable Read
4.1 .4 Serializable

4.2 Serializability vs. SQL-92
4.3 Granularity in SQL Locking
4.4 DB2

4.4.1 Locks
4.4.2 Sanctioned Lock Modes
4.4.3 Table and Tablespace Locks
4.4.4 Page Locks
4.4.5 Index Locks

4.5 Simulation of Row Level Locking
4.6 Expansion of Performance Tuning

V. Future Trends
5.1 Relational Database Management System
5.2 Optinlization of Locking
5.3 Continued Expansion in Field of Performance Tuning

Taxonomy of Concurrency Control

Pessimistic Optimistic (Non-Locking)

I
Locking Non-Locking Pure Broadcast

I

I
2PL 5 Color Altruistic

I Protocol
Timestamping

I

Basic Conservative Strict
2PL

Non-strict Strict
(non-recoverable) (recoverable)

PESSIMISTIC concurrency controls assume there will be contention for data, and prevents conflict by
locking items in use or by executing transaction operations in the order of the transactions' timestamps.

OPTIMISTIC concurrency controls assume data contention will be small, and arbitrates possible
conflict by checking a series of rules at validation phase.

2 PHASE LOCKING PROTOCOL
One of the most common concurrency
control protocols ensures transaction
isolation by locking data items.

Methods:
Guarantees serializability by:
1 . requiring that all locks precede all

unlocks
2. The scheduler checks that two

transactions do not hold locks on the
same item simultaneously

Types of locks:
READ locks (RLOCK)
1. prevent other transactions from

writing to the held item until
RLOCK is lifted

2. >1 transaction can hold RLOCKS at
one time

3. cannot obtain a RLOCK if a WRITE
lock is in effect

WRITE locks (WLOCK)
- 1. any transaction wishing to change a

value must obtain a WLOCK
2. only 1 transaction may hold a

WLOCK on a specific item at any
time

3 , if only one transaction holds a
RLOCK on an item, and wishes to
change the item, the lock can be
escalated to a WLOCK

TIMESTAMPING PROTOCOL
Each transaction is assigned a unique
timestamp to guarantee that conflicting
operations are executed in the order of
the transaction's timestamp.

Timestamps are issued by the scheduler
assigning the next number to each new
transaction, or the database management
system may use the value of the
machine's internal clock when a
transaction initiates.

Each item in the database is given two
timestamps
READ TIMESTAMP (tr)
1. highest timestamp held by any

transaction which has read the item
WRITE TIMESTAMP (tw)
1. highest timestamp held by any

transaction which has written the item

Rules to be checked:
if X=READ and
1. T >= tw, set read time to t if t > tr
2. T < tw, abort the transaction

if X=WRITE and
1. t >= tr and t >= Tw, set write time to

t i f t > t w
2. tr <= t < tw, execute
3. t < tr, abort the transaction

OPTIMISTIC PROTOCOL
Assumes no conflict will occur and
proceeds with the transaction using a
local copy. A validation phase checks to
see if the assumption is correct. If not,
the transaction is aborted and restarted.

Divides every transaction execution into
three different phases:

READ PHASE:
1 . Ti executes. Values of data items are

read and stored in local variables.
Write operations are performed here.

VALIDATION PHASE:
1. Ti performs a validation test to check

if it can copy its local variables to the
database without violating
serializability. Three timestamps are
necessary:
Start(Ti), when Ti starts executing
Validation(Ti) when Ti finishes the

read phase and begins validation phase
Finish(Ti), when Ti finishes its write

phase.

Rules for serializability:
1 . Finish(Ti) < Start(Tj).
2. Ti intersection Tj = 0.
3. Start(Tj) < Finish(Ti) <

Validation(Tj).
4. Write(Ti) intersection Read(Tj) = 0.

WRITE PHASE
1. If validation is successful, the values

in local variables are written to the
database

STRICT 2-PHASE LOCKING
requires:
1. A transaction will not be written into

the database until it has reached its
commit point

2. A transaction will not release any
locks until after the commit point
(this avoids cascading rollbacks)

Advantages:
1. Distinguishes between reads and

writes and their effect on the
database

2. Guarantees serializability regardless
of the types of transactions which
could operate concurrently with a
given transaction

3. Good for update-intensive
applications because it is safe

Disadvantages:
1. Inhibits concurrent execution

because of locking overhead
2. May lock an item no other

transaction needs
3. Inefficient in query-intensive

applications because of locking
overhead, possibility of deadlock
and waits for locked data.

STFUCT TIMEBASED PROTOCOL
requires:
1. All updates are performed only in the

workspace
2. All updates are written into the

database after the transaction
commits. Cascading rollback is
avoided

1 . Different from locking, because the
blocked transaction aborts rather than
waits for access

2. >1 transaction can read the same item
at different times, conflict-free

3. Enhanced concurrency over phased
locking because transactions do not
block each other needlessly

1. Inefficient where aggressive locking
makes sense (where >I transaction
executing simultaneously require the
same item). A large amount of
rollbacks will occur

2. Timestamp checking done prior to a
commit point, because you cannot
abort after a commit

1. Does not inhibit access prior to
validation phase because emphasizes
arbitration of conflict between
transactions, not prevention

2. High concurrent access possible
3. Superior for query intensive

databases or other systems with a low
conflict rate

1. Not efficient in high contention,
frequent-update systems.

2. May abort more transactions than
either previous method because
checks timestamps later.

3 . Not as intuitively understandable as
the others.

Logical Transaction System Model

update
object update

queue

restart delay

4

access queue
access

Taken from Salem, Kenneth, Garcia-Molina, Hector, and Shands, Jeannie, "Altruistic
ccking," ACM Transactions on Database Systems, Vol. 19, No. 1, March 1994, pp. 140.

I ' , ready RESTART
queue

t

blocked queue

All Histories

Read and write
Write locks on Read locks on locks on predicates
rows of a table rows of a table (in WHERE clauses)
are long term are long term are long term

Read Uncommitted NIA NO
(dirty reads) (read only)

Serializable

Traditional & Academic View

Non-Serializable

- - - .
Pragmatic & Real-World View

, 1 1 1 1 1 1 1 1 1 1 -

Read Committed
(cursor stability)

YES NO NO

1 1 1 1 1 1 1 1 1 1 1 1 m m

Repeatable Read YES YES NO

Altruistic :
:

Serializable YES YES YES

~ 1
:

Figure 4.1.1. Locking Behavior of SQL-92 Isolation Levels. Different locking behavior is
exhibited for rows in tables and predicates in WHERE, clauses. "Notice that it is possible for a
scheduler to support concurrently executing transactions of different isolation levels in the same
transactional workload." (O'Neil 1994, p. 680-681)

I
I
I
I
I
I
I

-
2PL Timestamp

Certifier
- - - - - - -

I
I
I
I
I
5

I I
I I

: I Serial : I

I Z
8
I
I
I
I

I
8
I
I
I
I
I
I
I
n
I
I

1 I
I I
I I
- - - - - - * -

SQL-92 Isolation Levels

a g g ~ m r r g r r - r - ~ ~ m = - m m ~ m ~ m (~ . ~ ~ m m . ~ m . ~

Varying Types of Locks Used by an SQL Statement

(Only Dynamic SQL)

Figure 4.3.2.1. Illustrates the varying types of locks an SQL statement can use. While some locks
are beyond control of the DBA, others can be controlled to some degree.

Check Auth

Taken from Bischoff, Joyce and Yevich, Richard, "The DB2 Dilemma: Managing Locking
Contention," Database Programming & Design, May 1992, pp. 27-38.

LJ

Lock Indexspace
IX Lock

I 1
Select Col-1, Col-2 PAGE Indexspace

From Table-Y
Where Col-A :=Value

Lock , sKcT For Upd

PAGE
Skeleton Cursor Lock

Table

Tablespace

Example 1, One Tablespace

(defines ownership of tables, table columns,
integrity constraints, indexes,user
authorizations, etc. Sample list at right.

Table 1

xxxx xxx(x),
XXX xxxxx,
XXX xxxxx

User
Table N

xxxx xxx(x),
XXX XXXXX,

XXX xxxxx

Example 2, Two Tablespaces

(defines ownership of tables, table columns,
integrity constraints, indexes,user

The System Catalog contains 16 files that define a system's
authorizations, definitions, usage and views at a given time.
They are: SYSACCESS, SYSCATALOG,
SYSCHARSETS, SYSCOLAUTH, SYSCOLUMNS,
SYSDBSPACES, SYSDROP, SYSINDEXES,
SYSOPTIONS, SYSPROGAUTH, SYSSYNONYMS,
SYSTABAUTH, SYSUSAGE, SYSUSERAUTH,
SYSUSERAUTH, SYSUSERLIST, AND SYSVIEWS.

This type of "one tablespace fits all" structure denotes an
inexperienced DBA. If a table is locked for data access, the
whole system may be locked, through escalating locks.

xxxx xXX(x), XXXX xxx(x),
XXX XXXXX, XXX XXXXX,

XXX XXXXX XXX XXXXX

'his is the more standard way of specifying tablespaces, with the System Catalog in one tablespace, and user
lbles in another. Note that placing multiple tables in one tablespace conserves resources and may speed access,
+ut reduces possible concurrency if the tablespace is locked.

(defines ownership of tables, table columns,
integrity constraints, indexes,user
authorizations, etc. Sample list at right.

Fxample 3, Multiple Tablespaces

M
 his sample shows tablespaces arranged for maximum
~tirnization under locking. Every table is in a separate

-t;lblespace. Although locking is an expensive operation, made
cheaper by taking table or tablespace locks rather than page
\ocks, concurrency is reduced.

7

) 9

0.

Table 1

xxxx xxx(x),
XXX xxxxx,
XXX xxxxx 0--

