
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Analysis of Multiterm Queries in

Partitioned Signature File Environments

Deniz Aktug
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/38

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1993-005

Analysis of Multiterm Queries in Partitioned Signature
File Environments

Deniz Aktug

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Analysis o f Multiterm Queries

in Partitioned Signature File Environments

Deniz Aktug
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #93-005 April, 1993

ANALYSIS OF MULTITERM QUERIES
IN PARTITIONED SIGNATURE FILE ENVIRONMENTS

Graduate Research

by

Ileniz Aktug

In Partial Fulfillment
of the Requirements for

Master of Systems Analysis Degree

Miami University
April, 1993

Abstract

The concern of this study is the signature files which are used for information storage and

retrieval in both formatted and unformatted databases. The analysis combines the

concerns of signature extraction and signature file organization which have usually been

treated as separate issues. Both the uniform frequency and single term query assumptions
are relaxed and a comprehensive analysis is presented for multiterm query environments

where terms can be classified based on their query and database occurrence frequencies.

The performance of three superimposed signature generation schemes is explored as they

are applied to a dynamic signature file organization based on linear hashing: Linear

Hashing with Superimposed Signatures (LHSS). First scheme (SM) allows all terms set

the same number of bits regardless of their discriminatory power whereas the second and

third methods (MMS and MMM) emphasize the terms with high query and low database

occurrence frequencies. Of these three schemes, only MMM takes the probability

distribution of the number of query terms into account in finding the optimal mapping

strategy. The main contribution of the study is the derivation of the performance

evaluation formulas which is provided together with the analysis of various experimental

settings. Results indicate that MMM outperforms the other methods as the gap between

the discriminatory power of the terms gets larger. The absolute value of the savings

provided by MMM reaches a maximum for the high query weight case. However, the

extra savings decline sharply for high weight and moderately for the low weight queries

with the increase in database size. The applicability of the derivations to other partitioned

signature organizations is discussed and a detailed analysis of Fixed Prefix Partitioning

(FPP) is provided as an example. An approximate formula that is shown to estimate the

performance of both FPP and LHSS within an acceptable margin of error is also modified

to account for the multiterm case.

Key Words and Phrases: Access methods, descriptors, document retrieval, dynamic file,

file design, hashing, information retrieval, multimedia data, ofice automation, signature

files, superimposed coding, text retrieval

ACKNOWLEDGEMENTS

I am indebted to Fazli Can of Miami University for proposing the research problem,
guiding my literature survey and providing invaluable feedback. I also would like to

thank Pave1 Zezula of Technical University of Brno for providing timely results of his

work bdore they are published in the media, Emily Murphree and Jon Patron of Miami

University for their valuable discussion.

Approvals

Student : Date:

Advisor: Date:

Member: Date:

Member: Date:

TABLE OF CONTENTS

Page
. . ABSTRACT . 11

ACKNOVlrLEDGEh'ENTS iii

. LIST OF TABLES vi

. LISTOFFIGURES vii

. 1 . INTRODUCTION 1

2 . LINEAR HASHING WITH SUPERIMPOSED SIGNATURES 3
2.1. The Method . 3

. 2.2. Performance Evaluation 5

3 . LHSS BASED ON TERM CHARACTERISTICS FOR

SINGLE AND MULTITERM QUERIES 6

4 . PERFORMANCE EVALUATION FOR SM. MMS.

AND MMM CASES . 8
4.1. Finding the Distribution of the Query Weight 8

4.2. A Closer Look at the Query Structure . 10
4.3. Derivation of an Expression for EXPH for Each Outcome 13

5 . APPLICATION OF PERFORMANCE EVALUATION

FORMULAS TO THE TEST CASES . 14

. 6 . EXPERIMENTAL ANALYSIS 15

7 . APPLICABILITY OF THE FINDINGS TO OTHER

PARTITIONED SIGNATURE FILE ORGANIZATIONS 20
7.1. Application of the Results to FPP . 21
7.2. Approximation of PAR for LHSS and FPP 23

8 . EFFICENCY RELEVANCY CONSIDERATIONS 24

9 . APPLICATION OF THE FINDINGS TO REAL L m CASES 25

......... 10 . CONCLUSION AND FUTURE RESEARCH POINmRS 26

LIST OF TABLES

TABLE Page
. I . Definition of Important Symbols for Section 2 4

I1 . Definition of Important Symbols for Sections 3-6 . 7

111 . Optimum Weight Assignment Formulas for SM. MMS and MMM Cases . 8
. IV . Sequence Numbers of Outcomes 14

. V . Definition of the Query Cases 15
. VI . (mi. m2) Values for SM. MMS. MMM 20

.................... VII . DefinitionofImportant SymbolsforSections7.8 21

LIST OF FIGURES

FIGURE Page
. 1 . Signatureextraction 2

. 2 . Tree diagram for query outcomes 12

.. 3 . PERSAVinUD 16

. 4 . PERSAVinLW 16

. 5 . P E R S A V i n W 17
. 6 EXTSAVforUD. LWandHW . 18

vii

1. INTRODUCTION
Information retrieval systems (IRSs) serve the purpose of finding the data items that are

relevant to the submitted user queries. A multimedia IRS can consist of formatted stored

objects as well as the unformatted ones like text, voice or image. Full text/object
scanning, inverted indexes, clustering and signature files are some of the IRS techniques

[CAN90, CHR84, FAL85, SAL89, TIB91, ZEZ91J. The concern of our study is

signature files which are widely used in formatted and unformatted databases for

multiattribute query processing.

In spite of the latest efforts to develop more powerful database management systems

for attribute type data, there still is a need for an integrated access method that will be

applicable for both formatted and unformatted data. In addition to those environments
where text and formatted data are used side by side (like office automation systems),

more complex applications require handling of various media such as image, graphics,

voice, sound and video. Examples of possible applications of signatures to such cases

include automated law and patent offices, for archival purposes, computerized libraries,

design applications (CAD), integrated manufacturing systems (CIM), indexing of Prolog

databases, statistical databases, chemical databases for DNA matching and multimedia

document retrieval [COL86, FAL85, FAL88, RAM86, TIB91, ZEZgl].

Throughout the paper, data items stored in the database (formatted, unformatted or

combined) will be referred to as "records" or "objects." Using the signature approach, the

essence of data objects (messages, documents, image representations, etc.) are extracted

and stored in a separate file where each object is represented as a bit string (signature).

This file of abstractions reveals the information content of the original source (with some

loss due to the nature of the signature extraction process) and has a smaller size (typically

10-15 % of the original file) [FAL92, TIB911.

Upon a retrieval request, a two stage process is applied: In the first stage, the

signature of the query is created and compared against the entries of the signature file to

find the qualifying signatures whose corresponding objects are to be retrieved as a

response to the specified query. The second stage consists of retrieving the objects with

the qualifying signatures only. The process in the first stage is much simpler than

scanning the original file since only bit patterns consisting of a sequence of 1s and 0s are

involved rather than the original data. Besides, the outcome of the first stage acts as a

filter to limit the number of the objects to be considered in the second stage since only the

ones with qualifying signatures need to be accessed [AKT93d].

However, due to the information loss that takes place during signature generation,

some signatures seem to qualify the queries although the corresponding objects do not.

This situation, known as a false drop or a false match, leads to unnecessary disk accesses

since it cannot be detected until the original data objects are accessed. Figure 1 provides

an example for signature generation using Superimposed Coding where each term is

hashed to a bit string where it sets a predefined number of bits to 1. The individual term

signatures are then superimposed to form the object signature. Example queries that

result in no match, true match and a false match conditions are also provided.

1 object signature generation 1
&ms
object
signature
generation

SlWY
database
generation
information

term sipnatures
loo0 loo0
0010 0100
loo0 loo0 -------- --------
1010 1 100 c= object signature

gyery signature
1100 0000
loo0 loo0
1010 0000

lz2s.Ub
no match
true match
false match

Figure 1. Signature extraction.

Most research on signatures focuses on the possible ways to alleviate the two

weaknesses of this approach: the occurrence of false drops and the increased response

time for large size databases. The use of appropriate signature generation schemes that

will minimize the occurrence of false drops has been discussed in [AKT93a, AKT93b,

AKT93c, FAL85, FAL87a, FAL87b, FAL87c, FAL88, FAL92, LEN921. Also many

signature file organizations that will provide faster response times even for very large

databases without generating too much storage overhead and extra difficulty in update

operations have been proposed. Examples include bit and frame sliced structures

[LIN92], two-level organizations [CHA89, CHA92, SAC85, SAC871, multi

organizational schemes [KEN9O], S-Trees [DEP86], indexed descriptor files [PFA80],

signature trees [THA88], and partitioned organizations [GRA92, LEE89,ZEZ91].

This study concerns the comparison of three signature generation schemes as they are

applied to a dynamic signature file organization structure known as Linear Hashing with

Superimposed Signatures (LHSS) or Quick Filter [ZEZ88, ZEZ911. The first scheme

treats all terms in an identical way, neglecting the differences in their occurrence and

query frequencies, whereas the second and third schemes actually make use of such

differences in generating the term signatures. The second scheme uses an optimal

signature generation strategy which is based on the assumption that only single term

queries are submitted whereas the third scheme considers multiterm queries as well

[FAL85, FAL87a, FAI.381.

The main contribution of the paper is the derivation of the performance evaluation

formulas for the selected file organization for each of the above schemes in an

environment where both single and multiterm queries are submitted. Not only are the
uniform frequency and single term query assumptions relaxed, but also the application of

the suggested schemes in the dynamic file structure LHSS is presented together with an

analytical analysis for queries with any number of terms. Furthermore, the applicability

of the derivations to other partitioned signature file organizations is discussed using Fixed

Prefix Partitioning (FPP) as an example to illustrate this point. A modified approximate

formula for more practical applications in multiterm query environments is also proposed

where an easier way to estimate the performance of FPP and LHSS methods is required.

Section 2 explains LHSS and presents the performance evaluation formulas. Section

3 defines the three signature generation schemes. The derivation of the performance

evaluation formulas for these schemes is given in Section 4, whereas their application to

our specific test cases is explained in Section 5. Section 6 presents the results of the

experimental analysis. Section 7 discusses how the derivations can be used to evaluate

the performance of other partitioned schemes in multiterm query environments with a

special emphasis on FPP and provides a modified approximate formula applicable to both

methods. The efficiency relevancy considerations for LHSS, FPP and other partitioned

environments in general are discussed in Section 8. The guidelines for the application of

the findings to real life cases are provided in Section 9 and the conclusion is presented in

Section 10.

2. LINEAR HASHING WITH SUPERIMPOSED SIGNATURES (LHSS)
Linear hashing is an efficient way to organize partitioned dynamic files [LIT80]. A

derived method, which is originally introduced by Zezula and his coworkers, is linear

hashing with superimposed signatures [ZEZ88].

2.1 The Method
LHSS provides a method for mapping signatures to storage pages and processing the

queries to find qualifying signatures. Other methods on signature file partitioning can be

found in [LEE89]. The primary component of LHSS is a split function which converts

the key of each signature into an integer in the address space {0, 1, . . . , n-1) where 2h-1

< n 2h is satisfied for some integer h. The hashing function is defined as follows

[ZEZ88,ZEZ9 11.

where bi is the value of the ith binary digit of the object signature, F is the signature size,

h is the hashing level, n is the number of addressable (primary) pages and Si is the object

signature i. (For easy reference, the definition of the important symbols of this section is

provided in Table I.)

Table I. Definition of Important Symbols for Section 2
bi : value of the ifh binary digit of the term signature
h : hashing level
k : no. of bits set to 1 in the final query signature
m : no. of bits a term sets to 1

(when each term sets the same no. of bits)
mi : no. of bits set by each term of the ifh term subset
n : no. of addressable pages
Si : ifh object signature
EXPH(W(Q),hl : expected number of bits set in the h-bit suffix of a signature

whose weight is W(Q)
F : size of a signature in bits
N(n, h, W(Q)) : no. of pages that do not need to be accessed
pti) : probability that j bits are set in the h-bit suffix of the query
p(W(Q), h) : probability of access savings
R(h) : no. of pages hashed at level h
W(Q) : query weight, i.e., the no. of 1s in query signature

For the initial condition, h=O, n=l, and g(si, 0, 1) is defined as 0. In simple terms, the

hashing function, g, uses the last h or (h- 1) bits of a signature to determine the number of
the addressable page where signature si is to be stored. If the storage limit of a primary

page is exceeded, an overflow page is created, linked to the primary page and the last

signature that has caused the overflow is placed in the overflow page and, a "split" is

initiated, i.e., a new primary page is created. A split pointer, SP (with an initial value of

0), keeps track of the next primary page to be split. Whenever a split takes place, all

signatures on the page pointed to by SP, together with those in the associated overflow

page(s) are rehashed. The nature of the hashing function guarantees that the rehashed

signatures either remain in the same page or are transfened to the page that has just been

created. The hashing level is increased by one just before page zero is split, and

following each split process the new value of SP is computed as SP = (SP + 1) mod 2h-1.

Note that at a given time in the signature file it is possible to have pages which are hashed

at levels h and (h-1). Note also that linear hashing is space efficient and does not lead to

many overflows [LITgO].

During query processing a page qualifies if all bit positions that are set in the query

signature are also set in the page signature. For simplicity, if we assume that n = 2h and

if there is a query signature with k 1s in its h-bit suffix, then it is necessary to access 2h-k

primary pages (and the associated overflow pages). More number of 1s in the last h-bit

suffix of a query makes the query processing faster. Note that even if a signature in the

selected page seems to qualify the query, the associated data object might not contain all

query terms. Hence a false drop resolution is required using the original query before the

qualifying objects are returned to the user

2.2 Performance Evaluation
It has been shown that the number of page savings can be computed as a function of the

number of addressable pages (n), the hashing level (h), and the number of 1s in query

signature, i.e., the query weight (W(Q)) provided that the signature size is kept fixed at F

[Z Z 9 11.

Let EXPH(W(Q), h) be the expected number of bits set in the h-bit suffix of the query

signature.
min h W(Q))

EXPH(W(Q), h) =
j = 1

where Pu) is the probability that j bits are set in the h-bit suffix of the query and can be

written as follows.

PG) = (3)

(&I)
Next probability of access savings, P(W(Q), h), can be defined as the proportion of the

number of pages that do not need to be accessed (while processing a particular query) to

the total number of addressable pages. Hence

where npa is the number of pages accessed, n is the number of addressable pages in the

signature file. Note that only 2h-EXPH(W(Q)? h) number of pages need to be accessed.

So when 2h= n
11

npa =
2 EXPHCN(Q)b)

and

= 1 - 1

E="HfW(Q)fi)
(6)

2

When n= 2h, SP = 0 and all pages are hashed at level h. As soon as a page split takes

place, the value of h is increased by 1 and both page 0 and the new page are rehashed at

this level. Since each split results in the rehashing of two pages, number of addressable

pages hashed with level h, R(h) can be defined as
h- 1 R(h) = 2(n - 2) = 2n - 2 h

where 2h-1 is the number of addressable pages when all pages are hashed at level (h-1).

The difference between n and 2h-1 indicates the number of page splits that have taken

place since then. Each split results in the rehashing of two pages, so the multiplication of

the number of splits by two gives the number of pages hashed at level h.

It follows that
h R(h-1) = n - R(h) = 2 - n

Finally, the total number of page savings, N(n, h, W(Q)), is defined as the number of

pages that need not be accessed for a given query and can be expressed as follows.

N(n, h, w(Q)) = R(h) P(W(Q), h) + R(h- 1) PC;V(Q), h- 1) (7)

3. LHSS BASED ON TERM CHARACTERISTICS FOR SINGLE AND
MULTITERM QUERIES

Faloutsos has suggested grouping all terms in the database into ns number of disjoint sets

(S1, S2 , . . . , S,,) based on the frequency with which they are specified in the queries

[FALSS]. All terms in a given Si (1 (i 5 n,) set the same number of bits in generating

their signatures and the optimal number of bits set by the terms in set i (Si), mi, is

computed by taking the query and occurrence frequency of the terms into account. The

approach is based on the observation that the terms with lower database occurrence

frequency are specified more frequently in the queries. Such terms are said to have high

discriminatory power in the sense that they efficiently determine those documents that are

most relevant to the query. Since terms with high discriminatory power are more

important, they should be given the privilege to set relatively more number of bits in their

associated term signatures. Unlike some other studies bEN92, FAL87b1, this approach

can be used to account for multiterm queries and eliminates the need for a lookup table.

The purpose is to minimize the false drop probability by using the differences between

the term discriminatory power values.

The query frequency is represented by qi where qi is the probability that a query term

is from Si, and (q l+ q2 + . . . + qns) = 1. The occurrence frequency, on the other hand, is
reflected in the Di values where Di is the average number of terms in a record that are

from Si, and D = (Dl + D2 + . . . Dn,), and D is the average number of terms in a record.

(For quick reference, the definition of the symbols for Sections 3 to 6 are provided in

Table 11.)

Table 11. Definition of Important Symbols for Sections 3-6
bi : no. of terms from Si in a query

t
EXPH

EXTSAV
F
Hw
LW
OEXPH

: no. of bit set by the jh query term
: expected no. of distinct terms in a record
: expected no. of distinct terms of Si in a record
: hashing level
: possible values for the addtional no. of bits set to 1 after the first stage
: no. of bits a term sets to 1
(when each term sets the same number of bits)

: no. of bits set by a term from Si
: node number in Figure 2 (0 n < t)
: number of disjoint sets
: no. of terms in a query (nqt < t)
: probability that query term is from Si, given a term signature
: maximum no. of terms in a query
: expected no. of bits set in the h-bit suffix of the query for a specifically
identified outcome

: extra percent savings provided by MMM over SM or MMS
: size of a signature in bits
: case in which queries with high weights are frequent
: case in which queries with low weights are frequent
: expected no. of bits set in the h-bit suffix of the query considering
all possible query outcomes

: probability that exactly k terms will be specified from Si

pj : probability that j terms are specified in a query
PERS AV : percentage of the addressable pages that do not have to be accessed
s i : set i of the terms with similar discriminatory power
UD : case in which the probability distribution of the no. of query terms is

uniform, i.e., the Pi (k) values are equal

Ys : weight of a query signature after s term signatures are superimposed

Table I11 shows the formulas for the optimal assignment strategies for three signature

generation schemes which are based on this approach. Single m (SM) case refers to the

method in which all terms are assumed to have the same occurrence and query

frequencies and hence set the same number of bits regardless of their discriminatory

power. This is a crude way to generate term signatures but the results can serve as a

reference point against which the performance of other more sophisticated signature

creation schemes can be evaluated. The derivation of the formula for the Multiple m

based on Single queries (MMS) case is based on the occurrence of single term queries
only and hence the resulting mi values tend to be sub optimal when they are applied to

the environments where multiterm queries are also possible. Multiple m based on

Multiterm queries (MMM) case not only treats terms differently based on their

discriminatory power, but also takes multiterm queries into account. Hence it is

expected to give the largest savings in retrieval for our experimental settings. Yet there is
additional practical overhead incurred in finding the optimal mi values with this method

rising from the need to estimate the Pi(k) values where Pi(k) is the probability that exactly

k terms will be specified from Si. In fact, this is one valid reason to consider the

performance of MMS: It might be plausible to be content with the output provided by
MMS if we are convinced that MMS provides satisfactory amount of savings. The mi

formula for MMM case is a good approximation of a complex method which gives the
exact solution. The formula in Table I11 gives better results for large mi values when

Pi(0) + 0, Pi (1) # 0 and they are of the same order of magnitude.

4. PERFORMANCE EVALUATION FOR SM, MMS and MMM CASES

4.1 Finding the Distribution of Query Weight
In order to compute the value of PERSAV (percentage of the addressable pages that do

not have to be accessed) for a particular experimental setting, expected number of 1s in

the h-bit suffix of the query signature should be known. This expected value is a function

of the query weight (see equation 2). For single term queries, query weight is a known

constant and equals to the number of bits set by the only query term. For multiterm

queries, however, query weight is a random variable and therefore has a probability

distribution.

When nqt terms are used in a query, the query signature can be generated by
superimposing the nqt individual term signatures. Let cj be the number of bits set by the

jth query term (where 2 (j < nqt) and F be the size of the signature. Then the possible
values for the query weight range from max{cj) (1 < j (nqt) to min {(cl + c2 + . . . +
cnqt), F) . The lower limit is associated with the case where all (nqt-1) terms set the same

bits that have already been set by term nqt* where cnqt*= max {cj). Typically, c l + c2 +
. . . + cnqt < F is quaranteed and the upper limit refers to the case where all nqt terms set

different bits.

The process of superimposing nqt term signatures can be viewed as an algorithm
consisting of nqt stages. At the initial stage, c l of the F bits are set by the first term. If

we let Yj indicate the number of bits set to 1 after the jth stage, Y1 = c l holds by

definition. Notice that c l = Y1 < Y2 < . . . < Ynqt = W(Q) and our concern is to find the

probability distribution of Ynqt, which is the number of 1s in the query signature at the

nqth stage, i.e., after nqt term signatures are superimposed. The study reported in
[MUR92] has indicated that P{Ys = u I Ys-1 = y, Ys-2 = z, . . . ,Y 1 = c l) = P{Ys = u I Ys-

1 = y)which means that the random variables Y 1, Y2,. . . , Ynqt form a Markov Chain

[FEL68]. Using the concepts of one-step-transition probabilities together with some

matrix manipulation techniques from Linear Algebra, [MUR92] has come up with an

expression for the probability distribution of the query weight, conditioned on the number

of 1s set by the first query term. That is

In the above expression, k stands for the possible values for the number of additional bit

positions that are set after the first stage and F is the signature size as usual.

Recall that our aim is to find a way to compute the expected number of 1s set in the h-

bit suffix of the query signature which is dependent on the query weight. The query

weight, however, is no longer a constant and has a probability distribution which depends

on the number of term signatures that are superimposed, nqt, together with the number of
bits set to 1 by each term, cj, and is conditioned on the number of bits set by the first

query term, c l . Hence, we not only should differentiate among the queries based on the

number of terms they have, but also on the cj values of these terms and the number of bits

set by the first term, c l .

4.2 A Closer Look at the Query Structure
Assume that the terms in the database can be grouped into two sets, S1 and S2, where S1

contains the ones with high discriminatory power. The terms from Si set mi (1 5 i 5 2)

number of bits and therefore cj equals to mi or m2. Let t be the maximum number of

terms that can be used in a query and let Pj indicate the occurrence probability of a query

with j terms where (PI + P2 +. .. + Pt) = 1 is satisfied.

The tree diagram in Figure 2 enables us identify all different query combinations
based on the criteria described Section 4.1. At any such combination, which is

represented as a final outcome, we know the answers to these three questions:

1. How many terms are there in the query?
2. How many terms are from S 1 and how many are from S2, i.e., how many of the query

terms set ml bits and how many of them set m2 bits?

3. Which set does the first query term belong to, i.e., how many bits does the first term

set?

This information enables us to compute the value of P(W(Q) = k+cl I c l) for each query

outcome for those values of k that are realizable. Next, we can compute the value of the

expected number of 1s in the h-bit suffix of the query for every such outcome. (The

derivations for this computation will be provided in the next section.)

So far we have clarified our reason to identify different query outcomes, now we can

concentrate on the way the tree diagram is constructed: If the tree is traced from left to

right, the correspondence between the branching procedure and the logical sequence of

the events can be seen. Starting from the leftmost node, numbered as 0, we encounter t

possibilities, each corresponding to a query with 'nqt' terms, where nqt stands for the

number of query terms and ranges from 1 to t. Each of the t branches symbolize one of

these t events (i.e., specification of a query with nqt terms) and the probability associated

with each event is indicated on its corresponding branch. Note that the sum of the

probabilities associated with the branches emanating from a particular node adds up to 1.

The submission of a single term query takes us to node 1 at which we have two
possibilities: The term is either from S 1 or S2.

Let bi : number of terms from Si (1 5 i < 2) in a query. Then
2 C bi = nqt

i = 1

should be satisfied. Therefore, it is sufficient to use just bl (or b2) to specify a query

combination, once nqt is known. For a single term query, the possible values for bi are 0

and 1 where

P { b l = l I n q t = l) = q l and P (b l = O I n q t = l] =q2

These two conditions take us to two final outcomes which can not be split up any further.

From any node n (2 (n 2 t), where n = nqt, (nqt+l) branches emanate, each
corresponding to one possible value for bl in the range 0 to nqt.

v (V - v)
P(bl = v 1 nqt = Y] =(,Y) ql q2

w h e r e O < v I V a n d 2 < V I t

Starting from node n, we can end up in any one of the (n+l) outcomes. However,

some of them can further be split up so that we will have the information to answer the

three questions that are listed at the beginning of this section. At each of these n+l

outcomes, the number of query terms and the number of 1s set by each term are known.

For the first and (n+l)sf outcomes, the number of bits set by the first term is also known

since these outcomes correspond to the cases where all query terms come from a single

set. For the remaining n-1 outcomes, we need further simplification depending on
whether the first query term is from S 1 or from S2. For each such case, let P{FI' E Si} be

the probability that first term is from Si (1 5 i 5 2). Then

I L P(FTE S1) = - and P(FTE S2) = -
nqt nqt

and hence

P(FT€ S1) + P (F T € S 2) = 1

At this point, it might be useful to look at a numeric example for clarification. Lets

concentrate on the case where we have three query terms. Then nqt = 3 and we are at

node 3 from which four branches originate. The probability associated with each branch

can be computed using equation (12). Of the four outcomes, two are final. When bl = 3,

all three terms are from set 1, each term setting ml bits and when bl = 0, all terms are

from set 2, each setting m2 bits.

For the case where bl = 2, we know that 2 out of 3 query terms are from S 1 but we

still do not know the number of bits set by the first term. We compute P(33" E S1) as 213

and P{FT E S2)as 113. For the case where b l = 1, these values are 113 and 213,

respectively. Hence for the queries with three terms, we have six query outcomes that we

need to treat separately.

In general, for t term queries, there are t+l branches and hence t+l outcomes. Two of

these are final, the remaining t-1 split into two. Hence we have (2 + 2(t-1)) , i.e., 2t final

outcomes.

P (b=OInq t= t)
1

c = m l
1

c = m
2 2

P(b = t I nqt = t)
1

Figure 2. Tree diagram for query outcomes.

4.3 Derivation of an Expression for EXPH for Each Outcome
Recall that P(W(Q) = k+cl I c l) can be computed for each query outcome identified in

Figure 2.
Since

substituting k+cl for W(Q) gives

min{h,k+cl]
(F - ~ k+cl-j))() j E X P H = ~ *

j = 1

where EXPH is the expected number of 1s in the h suffix of a particular query when k

additional bits are set after stage 1. The range of values for k must be specified for each

final outcome, since it depends on the number of terms and the number of bits set by each

term. Then the EXPH value for an outcome with nqt number of terms can be written as

where

kmax = 2 ci assuming that ci c F
i = 2

C
i = l

Note that for the two outcomes corresponding to the single term queries, we only need to
insert the value for c l for W(Q) and compute EXPH using equation (2).

Since the probability of occurrence of an outcome is the product of all probabilities of

the branches from node 0 to the outcome, the overall EXPH (OEXPH) value can be

computed by multiplying the probability of occurrence of each outcome with the EXPH

value associated with it and summing them up.

This OEXPH value can then be substituted in equation (6) to compute probability of

access savings, which in turn will be used to compute number of pages that need not to be

accessed. Finally, PERSAV can be obtained as a function of the number of pages, n, the

hashing level, h , and the overall expected number of bits set in the last h-bit suffix,

OEXPH.

PERSAV = N(n,h,OEXPH) * 100
n

5. APPLICATION OF PERFORMANCE EVALUATION FORMULAS TO THE
TEST CASES

In order to evaluate the performance of the three test cases, we need only to substitute the
mi values computed by each method in the performance evaluation formulas. For the SM

case, we just set mi = m2 = m, where m is computed using equation (8). The mi values

are computed using equations (9) and (10) for MMS and MMM cases, respectively. For
MMM, we need to compute Pi(k) values such that Pi(k) : probability that exactly k terms

will be specified from the ith set for (1 5 i 5 2,0 k 5 1).
In our experiments, we allow a maximum of 10 terms to be specified in a query and

hence set t = 10. Recall from Figure 2 that (n+l) branches emanate from node n. Since

we have 10 nodes, we end up with
10 z (n i l) = (lo) + 10 = 65 outcomes

2

Although some of these outcomes are not final, we will not go on any further since
this much splitting is sufficient to compute the Pi(k) values. Assuming we give a

sequence number to each of these 65 outcomes, ranging from 1 to 65, (bl = 0 I nqt = 1)

being the first and (bl = t I nqt = t) being the 65th, we now need to specify the sequence

numbers (see Table IV) of the outcomes for each of the following four conditions: bl = 0,

b l = l , b 2 =O,b2=1.

Given the outcome sequence number, its occurrence probability can be computed by

simply taking the product of the probabilities of the branches originating from node 0 and

ending at the outcome. Summation of all occurrence probabilities of the outcomes in one
row of Table IV will give us the associated Pi(k) value.

Note that although Table IV, is designed for the case where t = 10, it can be easily

extended using the pattern in which the sequence numbers appear in a row.

6. EXPERIMENTAL ANALYSIS
All experiments are based on the assumption that terms in the database are grouped into
two sets, S1 and S2. This assumption not only enables us to emphasize the points of

interest without going into unnecessary complexity but also represents many real life

cases w 8 5] . We specify the maximum number of query terms that can appear in a

query as 10, which we believe is appropriate to simulate many real life applications and is

consistent with the choice of the values of the other input parameters.
As for the Pj values, Cj = 1, 2,. . . , lo), three different query cases (QC) are

considered: Uniform Distribution (UD), Low Weight (LW) queries and High Weight

(HW) queries. The definition of each of the query cases are given in Table V.

Different values for the parameters F, qi (1 5 i 5 2) will be used in the experiments.

Our main purpose is to show how PERSAV is affected by the amount of change in the

values of the input parameters for three different probability distributions for each of the

three schemes. Note that an experimental design that will achieve complete coverage of

all possible combinations of the input parameters is impractical if not unnecessary.

Hence we attempt to derive inferences about the change in the behavior of the system

(represented as the change in the PERSAV) as a result of the alteration of the values of

the input parameters. We then can use these observations to come up with generalized

statements on the performance of the system under certain conditions.

Table V. Definition of the Query Cases

Experiment 1.
Purpose
The purpose of the experiment is to compare the performance of SM, MMS and MMM

cases in three different environments represented by the three different probability

distributions (UD, H W and LW) specified above.

Parameters
The signature size (F) equals to 100, the values for Dl and D2 are 15 and 25, and those

for ql and q2 are 0.80 and 0.20, respectively.

p8
0.10
0.00
0.20

p6
0.10
0.00
0.10

Query Case
UnifomDistribution@D)

p7
0.10
0.00
0.15

p1
0.10

p9
0.10

p5
0.10

Low Weight (LW) , 0.30
High Weight (HW) I 0.00

p2
0.10

p10
0.10

0.00 , 0.00 ,

0.25 1 0.30
0.25
0.00

p3
0.10

p4
0.10

0.20
0.00

0.15 , 0.10
0.00 I 0.00

Figure 3. PERSAV in UD.

Figure 4. PERSAV in LW.

Results
Figure 3 summarizes the results of the experiment for the UD case. Here PERSAV

provided by MMM is above the amounts provided by MMS and SM. Figures 4 and 5

show the results for LW and HW cases, respectively. These two cases correspond to two

extreme situations where a deliberate non uniformity in the probability distribution for

the number of query terms has been created. We expect MMM to provide excessive

savings over MMS and SM in these cases since it makes use of more information about

the system characteristics in determining the optimal assignment strategy. More

specifically, MMM considers the type and relative frequency of queries with any number
of terms that can be submitted to the system, whereas MMS computes the optimal mi

values as if only single term queries are submitted to the system.

Figure 5 . PERS AV in HW

Experimental results turn out to be consistent with intuition: MMM outperforms
MMS for both LW and HW cases. Note that MMM emphasizes the terms from S1 even

more by letting them set 4 bits whereas optimal number of bits set by terms from S1 is 3

for MMS. The comparison of Figures 3, 4 and 5 shows that PERSAV provided by all

three schemes are higher in the HW case compared to those in LW. This is because as

the probability of having queries with high weight increases, the OEXPH value also

increases, resulting in larger percent savings. For MMM, the gain is even more, since the

number of bits set by the terms from set 1 is larger than the values for the two other cases.

As the frequency of the queries with many such terms increase, the OEXPH value
increases even more, further increasing the amount of PERSAV. Figure 6. provides a

closer look at the results from a new standpoint.

Let

PERSAV(MMM) - PERSAV(other) ,
EXTSAV =

PERSAV(other)

where

PERSAV(MMM) : percent savings provided by MMM

PERSAV(other) : percent savings provided by any other scheme, SM or MMS, and

EXTSAV is the extra percent savings provided by MMM over SM or MMS.

-B- s m
t SMWD
+ SMLW
-+ MMS/HW
4- MMSAJD
-0- MMSLW

Figure 6. EXTSAV for UD, LW and HW.

Naturally, EXTSAV over SM is the highest in all three cases: UD, LW, HW.

However, the amount of EXTSAV decline for larger h values. For both of the H W cases,

EXTSAV is the highest of all other cases at the beginning, but decline sharply with

increasing values of h. This is due to the fact that OEXPH has a large value at HW

regardless of the type of the scheme used. The increase in retrieval efficiency of all three

methods become more effective as more bits of the signature suffix are taken into

account. Hence the extra contribution introduced by MMM becomes less significant.

For the LW cases, on the other hand, the savings are somewhat moderate but remain
almost unaffected from the increase in h values, i.e., the database size. Although

EXTSAV over MMS is smaller than that over SM, the decrease in the first one with

larger h values is slower.

The fact that the amount of savings is substantially high for our experiments does not
guarantee that such savings can be expected all the time. For those cases where the mi

values are considerably smaller relative to the signature size, the expected query weight

will be lower and hence the resulting savings will be less significant.

Experiment 2.
Purpose
The purpose of the experiment is to compare the optimal assignments (i.e., the suggested
mi values) for SM, MMS and MMM for larger signature sizes at three different settings,

each corresponding to one probability distribution.

Parameters
The values for Dl and D2 are 15 and 25, respectively. Three values are used for the

signature size: 400, 500, 600 and two values for the (ql, q2) pair are selected: (0.60,0.40)

and (0.80, 0.20). Since Di values are kept constant, the first pair of the qj values

corresponds to the case where terms from both sets are close in discriminatory power

whereas the second pair represents the case where terms are more distinctive.

Results
The (ml, m2) values at different settings for SM, MMS and MMM are summarized in

Table VI.A, V1.B and V1.C , respectively. The values for the (ql,q2) pairs are given on

the upper left comer of each table. Note that the optimal assignment in SM case depends
only on the values of F and D and hence is insensitive to changes in the qi values and the

probability distribution of the query weight. MMS, on the other hand, considers qi and

Di values but its assignment is independent of the nature of the probability distribution.

Hence for a specified F and (ql, q2) pair, the mi values remain constant for different

probability distributions. Using all available information in the input parameters, MMM
considers the values of Di, qi and F together with the nature of the probability

distribution.

The insensitivity of the SM scheme to the changes in the values of the various input

parameters leads to its inferior performance. Comparison of the two other methods

shows that as the gap between the discriminatory power of the terms increases, the MMM

assignment emphasizes the terms with higher power by letting them set more bits. Hence
the gap between the mi values is the largest for the MMM case. This observation

suggests that using MMM will be especially beneficial if the terms are highly distinctive

based on their discriminatory power.

Increasing the signature size has two effects working in the opposite directions: On
one side, higher values of F attempt to raise the mi values. (See equations 8, 9, 10.)

However, since these equations compute real mi values which need to be converted to

integer numbers for practical applications, an increase in F increments the integer mi only

if it is substantially large. Assuming that such a change occurs, larger mi values cause the

query weight to increase resulting in higher OEXPH values, which in turn cause higher

PERSAV. At the same time, however, as the signature size is increased, there are more

bits to choose from when a term signature is generated and consequently the OEXPH
value tends to drop. The resulting effect of increasing the value of F depends on the

relative power of these two opposite changes.

Table VI. (m m2) Values for SM, MMS, MMM

C. (m 1, m2) Values for MMM Case

B. (ml, m2) Values for MMS Case
(ql=0.60, ~ = 0 . 4 0) (q *=0.80, qyO.20)

In most cases when the increase in F is large enough to cause an increase in the
integer mi value(s), the reverse effect is suppressed and PERSAV values are raised. The

amount of increase in PERSAV is substantial for the HW case in particular, since in HW
queries with many terms are more frequent and hence larger mi values have a more

significant effect on the result. For the LW case, the increase in savings is moderate, if
any. In some cases, even though the integer mi value increases, savings decline. This

can be attributed to the fact that higher weight queries are not frequent enough to
supplement the positive effect caused by the increase in mi and hence the reverse effect

overrules.

(ql=0.60, ~ = 0 . 4 0)

7. APPLICABILITY OF THE FINDINGS TO OTHER PARTITIONED
SIGNATURE FILE ORGANIZATIONS

We have already mentioned that the difficulty associated with the analysis of the

multiterm query case compared to the single term situation arises from the fact that the

query weight is no longer a constant but a random variable. We have also shown, using

LHSS, that once the distribution of the query weight is determined for each possible final

query outcome, all remains to the inclusion of this knowledge in the performance

F=600
(5,4)
(5,4)
(54)

F=500
(4.3)
(4,3)
(4,3)

Iquerycase
UD
LW
HW

querycase\ F=400

query case
UD
LW
HW

F=500
(5 2)
(5,2)
(5 2)

F=400
(3,2)
(3,2)
(3,2)

UD
LW

F = 500
(4,3)
(4,3)

F=400
(3,2)
(4,2)
(4.21

F=WO
(6 3)
6 3)
(6.3) ,

(4,2)
(4.2)

F =600
(5,4)
(5 4)

, HW (4,2)

(4.3) 1 (5.4)

evaluation formulas of the organization of concern. This requires the consideration of all

possible values of the query weight together with the associated probabilities as we have

shown in equation 13.
Our derivation on the distribution of the query weight and the idea depicted by the

tree diagram in Figure 2 are both independent of the signature file organization and hence

can directly be used to evaluate the performance of other schemes. Since the query

weight is a variable in the performance evaluation formulas, accounting for all possible

values of the query weight and the associated probabilities for each outcome is sufficient

to compute the value of the performance measure (like EXPH in LHSS) for each query

outcome. Then the tree diagram is traced backwards and the probabilities of the outcomes

are taken into account to compute an overall value for the performance measure (like

OEXPH in LHSS.) Below we first demonstrate how this idea can be applied to Fixed

Prefix Partitioning (FPP) and then discuss the modification of an approximate

performance evaluation formula that has been shown to hold for both FPP and LHSS.

(Table VII. provides the list of the symbols for the following sections.)

Table VII. Definition of Important Symbols for Sections 7-8
d : weight of the partition key (i.e., the number of bits set to 1 in the

partition key
h : key length
n : no. of partitions
F : size of a signature in bits
OPARFPP : overall partition activation ratio for FPP (based on the distribution of

the query weight)
PARFPP : the partition activation ratio (the ratio of the number of partitions

activated to the total number of partitions) for EPP
PARLHSS : the partition activation ratio (the ratio of the number of partitions

activated to the total number of partitions) for LHSS
PAR : the estimated partition activation ratio for LHSS and FPP
PARrnod : the modified estimated partition activation ratio for LHSS and FPP

(based on the distribution of the query weight)
W(Q) : query weight, i.e., the no. of 1s in query signature

7.1 Application of Results to FPP
Fixed Prefix Partitioning is one of the three methods suggested by Lee and Leng for

signature mapping [LEESS)]. It uses superimposed coding technique to generate the

signatures and also assumes that all signatures consist of a key portion as well as a

nonkey part. It is this key part that determines which partition the signature will be stored

in. Key portions of all signatures in a partition are the same and constitute the partition

key. Similarly, the query signatures have these two parts. The key of a query signature is

extracted in the same way as the keys for the partitions and only those partitions whose

keys include the query key are accessed. Hence if the key portions of the query signature

and the ib partition, Pi, are shown as KQ and Kpi, respectively, then the partition Pi is
accessed only if (KQ n Kpi) = KQ.

Fixed Prefix Partitioning (FPP), takes the first k bits of the signature as the key

whereas the other two methods provide different ways to extract keys from the signatures.

Its performance is evaluated based on the resulting reduction in the search space and the

uniformity of the workload of the processors, assuming a parallel architecture. Signature

reduction ratio, which is the ratio of the number of signatures searched to the total

number of signatures and the partition activation ratio, which is the ratio of the number of

partitions searched to the total number of partitions, are two possible measures of the first

criterion. Partition activation probability, Pa, is defined as the probability that a partition

will be searched for a query and the equality of the activation probabilities is accepted as

an indicator of the uniformity of the workload, when a processor is assigned to a partition
and the partitions have the same size. Below, we will concentrate on the partition

activation ratio and show how our derivations can be used to determine its value for the

SM, MMS and MMM cases.

The partition activation ratio for FPP (pAR~pp) is shown to be computed as a
function of the signature size, F, the key length, h, the weight of the partition key, d (0

d 5 h), and the query weight, W(Q) [LEE89].
F-h+d

(16)

When the number of partitions, n, is equal to 2h, this equation can be justified intuitively:

The probability that a partition whose key has weight d will be activated can be computed

and since there are partitions whose keys have weight d, the product of these two

terms give the expected number of partitions with weight d that are activated for a query

with weight W(Q). Summing this up over all possible key weights, d, we find the total

number of partitions activated. Dividing the total number of activated partitions to the

total number of partitions (2h), we obtain the partition activation ratio.

Equation 16 can easily be modified to evaluate the performance of SM, MMS and

MMM methods in a multiterm environment as they are applied to FPP, by taking the

distribution of the query weight into account. For each final query outcome depicted in

Figure 2, PARFPP can be computed as

(17)
and then the overall value for the partition activation ratio (OPARpp) can be found by

tracing the tree back and multiplying the individual PARpp values with the associated

probabilities as described in Section 4.3.

7.2 Approximation of PAR for LHSS and FPP
The above analysis shows how the performance of the partitioned signature file

organizations can be evaluated. However, the required computations are tedious and the
derived formulas look very complicated. In search for an easy way to determine the

partition activation ratio, Ciaccia and Zezula have started with the exact formulas for

LHSS and FPP (equation 16) where

using equation 5 in Section 2.2. By using basic probability theory, they have proven that

these two equations actually coincide although they look very different [CIA92]. The

authors have further worked on this formulation and generated a closed formula that

approximates the partition activation ratio, PAR for both methods where

Though this approximation results in slightly higher estimates of the actual PAR value, it

is very simple to compute and use. Besides, the expected error, which increases as the

h/F ratio increases never exceeds 1.2%, which is very reasonable for performance

prediction computations. This formula can also be adjusted to be applicable in our case

by the inclusion of the distribution of the query weight. Then the modified formulation,

PARmd, can be written as follows

Note that the applicability of the same formula to both methods does not mean that they

behave in the same way. In fact FPP and LHSS differ in the way they control the

partition and the key size and their strategies to generate the partitions. For instance, the

hashing level in LHSS can be adjusted dynamically whereas the key length is fixed in

EPP which might lead to some problems. Starting with a long key length can result in
poor utilization of space whereas the choice of a shorter key length can lead to many

overflows. Hence LHSS provides a more flexible structure that allows expansion and

shrinkage when necessary, whereas FPP can only accomplish a relatively static structure.

8. EFFICIENCY RELEVANCY CONSIDERATIONS
When SM is used together with LHSS, FPP or any other partitioning scheme, all terms

are treated equally regardless of their occurrence and query frequencies and set the same

number of bits (m). When a single term query is specified in a query, the query weight is

constant and equals m. Hence the expected number of bits in the last h-bit suffix of the

query signature is the same regardless of the term discriminatory power values.

Therefore, the number of page accesses is also the same for all terms. When a term with

a low discriminatory power is specified in a query, a long list of documents will be

returned. (Notice that terms with low discriminatory power are the ones that appear in

many documents.) Yet a large portion of the returned documents will not be of interest to

the user. Hence the resulting relevancy will be very low. In contrast, when a term with

high discriminatory power is used in the query, only a few documents, most of which will

be relevant, are returned to the user, and the relevancy level will be significantly high.

A similar condition prevails for the multiterm case since when SM is used, the

distribution for the query weight for a query with a certain number of terms is the same

regardless of the discriminatory power of the query terms. Hence two different queries

where the first one consists of more selective terms and the other is made up of less

selective ones can achieve the same efficiency whereas the resulting relevancy levels will

be different. This situation which is typical in the SM case indicates an obvious

imbalance between efficiency and relevancy. For the same number of page accesses (i.e.

for the same level of efficiency), it is possible to end up with low or high values of

relevancy depending on the frequency characteristics of the query term(s). The more

significant the difference between the discriminatory power of the terms, the more severe

is the imbalance described above.
When MMS or MMM is used, the terms with high discriminatory power set more bits

than those with low discriminatory power. Hence, the number of page accesses required

for these two cases will differ in the first place. Consequently, the terms with high

discriminatory power provide relatively more page savings which will be consistent with

the high level of the resulting relevancy. On the other hand, terms with low

discriminatory power will somehow be penalized because now they will be setting fewer

bits. The resulting page savings will be low together with the undesirably low relevancy

level. The way to achieve high efficiency coupled with high relevancy is to increase the

query weight. This can be accomplished by using terms with high discriminatory power

in the queries or by constructing term phrases from non-discriminatory terms. In an IRS,
the former can be supported by an on-line thesaurus providing group of related specific

terms under more general, higher level class indicators; the latter can be implemented by

automatic phrase construction [CAN87, SAL891.

9. APPLICATION OF FINDINGS TO REAL LIFE CASES
Prior to selecting one of the three methods (SM, MMS, MMM) for a practical

application, the database (formatted, unformatted or combined) characteristics of the

system of concern should be explored (to create the non trivial term list ECAN87,

OZK86, SAL891 and to determine the occurrence frequencies) together with the query

characteristics (like query contents and frequencies). The findings about the occurrence

and query frequencies based on sufficiently large sample sizes can then be used to

determine the number of sets to be used. In most cases, two sets might be good enough

unless terms can apparently be classified in more than two groups based on their

occurrence and query frequencies [FAL85].
Next, each record is examined to determine the Di values and the sample queries are

reconsidered to come up with the qi values together with a tentative frequency

distribution for the number of terms in a query. This frequency distribution can enable

simulating the system behavior within an acceptable margin of error provided that the

query sample is of appropriate size and is selected in a proper manner. Then a value for

the signature size, F, is selected based on the values of these input parameters and the

amount of tolerable false drop [FAL87a].

Next, one of the three methods (SM, MMS, MMM), is selected considering the

database and query characteristics of the system which should have been revealed up to

this step. If, for instance, there exists a huge difference among the term discriminatory

power values, using MMM will provide extra savings over the other two methods,

especially when the frequency distribution is not uniform. Further computations for the
sake of comparison can be carried out to find out the mi values provided by each method.

If still undecided as to which method to choose, the expected savings for each method

can be determined using the sample queries at hand and our derived formulas. However,

updating will be necessary if either the contents of the database or the nature of the

submitted queries change significantly. Hence the intensity and frequency of substantial

change in system properties are also a characteristics of the system and must be

considered in selecting a signature generation scheme.

10. CONCLUSION AND FUTURE RESEARCH POINTERS
Our analysis combines the concerns of signature extraction and signature file

organization which have usually been treated as separate issues. We also relax the

uniform frequency and single term query assumptions and provide a comprehensive
analysis for multiterm query environments where terms can be classified based on their

query and database occurrence frequencies. We present the performance evaluation

analysis of three specific signature generation schemes (SM, MMS, MMM) as they are

applied to LHSS in a single and multiterm query environment. First scheme (SM) allows

all terms set the same number of bits regardless of their discriminatory power whereas the

second and third methods (MMS and MMM) emphasize the terms with high query

frequency and low occurrence frequency. Of these three schemes, only MMM takes the

probability distribution of the number of query terms into account in finding the optimal

mapping strategy. We point out that the complexity in evaluating the performance of the

cited schemes evolves from the challenging task of finding the distribution of the query

weight for each of the query outcomes identified.

We have shown that both MMS and MMM are clearly superior to SM in various

query environments. Our results also indicate that the extra savings provided by MMM

over MMS increase as the gap among the discriminatory power values of the terms get

larger and the probability distribution of the number of terms in the query depicts a non

uniform pattern. This is because MMM considers the nature of the probability

distribution of the number of query terms in determining the optimal assignment strategy

and emphasizes the terms with high discriminatory power in particular.

Our study shows how different system input parameters interact in the overall

working mechanism of the signature generation schemes and the LHSS organization.

Once this point is clear, one can make a knowledgeable selection on the values of the

input parameters and predict the expected savings. We also show how our derivations

can be applied to the FPP method and provide the modified version of an approximate

formula that is used to estimate the performance of both LHSS and FPP methods. A

discussion on the relevancy efficiency balance (which is improved by using MMM and

MMS instead of SM) is also provided.
With some modification, our derivations can be used to evaluate the performance of

additional partitioning methods. Ways to derive approximate performance evaluation

formulas (similar to PAR for LHSS and FPP) can also be explored to simplify the

computations and enable analysis using more realistic values for the input parameters

(larger signature size, for instance). This sure will extend applicability of the findings to

real life cases.
Future research can also deal with comparing the actual performance of a real life

system organized using a particular signature scheme against the estimated performance
level which is computed by using the derived equations. Simulation experiments (which

can be of similar nature to those presented for LHSS) can be designed for other

organizations to observe whether the experimental results obtained for LHSS about the

performance of SM, MMS and MMM are applicable to other organizations. Finally, our

integrated approach that combines the concepts of signature generation and signature file

organization can further be pursued to analyze the applicability of various signature

generation schemes to different organizations.

REFERENCES

[AKT93a] AKTUG, D., AND CAN, F. Signature file hashing using term occurrence and
query frequencies. In Proceedings of the 12th Annual IEEE International Phoenh
Conference on Computers and Communications. (Phoenix, March 1993), pp. 148-
153.

[AKT93b] AKTUG, D., AND CAN, F. Analysis of multiterm queries in a dynamic
signature file organization. To appear in the Proceedings of the 16th Annual
International ACM-SIGIR Conference (June 1993).

[AKT93c] AKTUG, D., AND CAN, F. Analysis of signature generation schemes for
multiterm queries in partitioned signature file environments. IEEE Transactions on
Krwwledge and Data Engineering (to be submitted).

[AKT93d] AKTUG, D., AND CAN, F. Signature files: An integrated access method for
formatted and unformatted databases. ACM Computing Surveys (to be submitted).

[CAN871 CAN, F., AND OZKARAHAN, E. A. Computation of tenn/document
discrimination values by use of the cover coefficient concept. Journal of the
American Society for Information Science. 38, 3 (1987), 171- 183.

[CAN901 CAN, F., AND OZKARAHAN, E. A. Concepts and effectiveness of the cover-
coefficient-based clustering methodology for text databases. ACM Transactions on
Database Systems. 15,4 (Dec. 1990), 483-5 17.

[CHA89] CHANG, J. W., LEE, J. H. , AND LEE, Y. J. Multikey access methods based on
term discrimination and signature clustering. In Proceedings of the 12th Annual
International ACM-SIGIR Conference (September 1989), ACM, New York, pp. 176-
185,

[CHA92] CHANG, J. W., YOO, J. S., AND LEE, Y. J. Performance comparison of
signature-based multikey accessed methods. Microprocessing and
Microprogramming. 35, (1992), 345-352.

[CHR84] CHRISTODOULAKIS, S., m FALOUTSOS, C. Signature files: An access
method for documents and its analytical performance evaluation. ACM Transactions
on ODce Information Systems. 2,4 (October 1984), 267-288.

[CIA921 CIACCIA, P., AND ZEZULA, P. A Note on estimating accesses in partitioned
signature file organizations. Technical Note. (1 st author's address: DEIS - University
of Bologna, Vide Risorgimento 2 - 40136 Bologna - Italy.)

[COL86] COLOMB, R. M., AND JAYASOORIAH. A clause indexing system for
PROLOG based on superimposed coding. The Australian Computer Journal. 18, 1
(August 1985), 18-25.

[DEP86] DEPPISH, U. S-tree: A Dynamic balanced signature index for office retrieval.
In Proceedings of the 9th Annual International ACM-SIGIR Conference on Research
and Development in Information Retrieval (Pisa, Sept. 8-10, 1986), ACM, N.Y.,
1986, pp. 77-87.

[FAL85] FALOUTSOS, C., AND CHRISTODOULAKIS, S. Design of a signature file
method that accounts for non-uniform occurrence and query frequencies. In
Proceedings of the 11 th International Conference on VLDB (Stockholm, Aug. 1985).
VLDB Endowment, 1985, pp. 165- 170.

[FAL87a] FALOUTSOS, C. Signature files: An integrated access method for text and
attributes, suitable for optical disk storage. In University of Maryland Computer
Science Technical Report Series, June 1987.

[FAL87b] FALOUTSOS, C., AND CHRISTODOULAKIS, S. Optimal signature
extraction and information loss. ACM Transactions on Database Systems. 12, 3
(September 1987), 395-428.

[FAL87c] FALOUTSOS, C., A N D CHRISTODOULAKIS, S. Description and
performance analysis of signature file methods for office filing. ACM Transactions
on Ofice Information Systems. 5,3. (July 1987), 237-257.

[FAL88] FALOUTSOS, C., Signature Files: An integrated access method for text and
attributes, suitable for optical disk storage. BIT. 1988,736-754.

[FAL92] FALOUTSOS, C. Signature files In Information Retrieval Data Structures and
Algorithms, edited by W . B. Frakes, R. Baeza-Yates, Prentice Hall, Englewood Cliffs,
N.J., 1992, pp 44-65.

[FEL68] FELLER, W. An Introduction to Probability Theory and its Applications, 3rd
ed. John Wiley & Sons, New York, 1968.

[GRA92] GRANDI, F., TIBERIO, P., AND ZEZULA, P. Frame-sliced partitioned parallel
signature files. In the Proceedings of 15th Annual International ACM-SIGIR
Conference (Kopenhagen, Denmark, June 1992).

[KEN901 KENT, A., SACKS-DAVIS R., AND RAMAMOHANARAO, K. A Signature
file scheme based on multiple organizations for indexing very large text databases.
Journal of American Society for Information Science. 41,7 (Oct. 1990), 508-534.

zEE891 LEE, D.-L., AND LENG, C.-W. Partitioned signature files: Design issues and
performance evaluation. ACM Transactions on Information Systems. 7, 2 (Apr.
1989), 158-180.

[LEN921 LENG, C.-W R., LEE, D. L. Optimal weight assignment for signature
generation. ACM Transactions on Database Systems. 17,2 (June 1992), 346-373.

LIN921 LIN, Z., AND FALOUTSOS, C. Frame-sliced signature files. IEEE Transactions
on Knowledge and Data Engineering. 4,3 (June 19921, 281-289.

LIT801 LITWIN, W. Linear hashing: A new tool for files and tables addressing. In
Proceedings of the 6th International Conference on VLDB (Montreal, Oct. 1980), pp.
212-223.

[MUR92] MURPHREE, E., AND AKTUG, D. Derivation of probability distribution of
the weight of the query signature. (Preprint. 1st author's address: Department of
Mathematics and Statistics, Miami University, Oxford, OH 45056, USA.)

[OZK86] OZKARAHAN, E. A., AND CAN, F. An automatic and tunable document
indexing system. In Proceedings of the 9th Annual International ACM-SIGIR
Conference (September 1986), ACM, New York, pp. 234-243.

[PFA80] PFALTZ, J. L., BERMAN, W. J. , AND CAGLEY, E. M. Partial-match retrieval
using indexed descriptor files. Communications of the ACM. 23, 9 (September
1980), 522-528.

[RAM831 RAMAMOHANARAO, K., AND LLOYD, J. W. Partial-match retrieval using
hashing and descriptors. ACM Transactions on Database Systems. 8 , 4 (December
1983), 552-576.

[SAC851 SACKS-DAVIS, R. Performance of a multi-key access method based on
descriptors and superimposed coding techniques. Information Systems. 10,4, pp.
39 1-403.

[SAC871 SACKS-DAVIS, AND R., RAMAMOHANARAO, K. Multikey access methods
based on superimposed coding techniques. ACM Transactions on Database Systems.
12,4 (December 1987), 655-696.

[SAL89] SALTON, G. Automatic Text Processing: The Transformation Analysis, and
Retrieval of Information by Computer. Addison Wesley, Reading, Mass., 1989.

[THA88] THARP, A. L. File Organization and Processing. John Wiley and Sons, New
York, N.Y., 1988.

[TIB91] TIBERIO, P., AND ZEZULA, P. Selecting signature files for specific
applications. In Proceedings of Advanced Computer Technology, Reliable Systems
and Applications, 5th Annual European Conference. (Bologna, Italy, May 1991)
IEEE, 1991, pp. 718-725.

[ZEZ88] ZEZULA, P. Linear hashing for signature files. In Proceedings of the IFIP
TC6 and TC8 Open Symposium on Network Information Processing Systems. (Sofia,
Bulgaria, May 1988), pp. 243-250.

[ZEZ91] ZEZULA, P., RABITTI, AND F., TIBERIO, P. Dynamic partitioning of
signature files. ACM Transactions on Information Systems. 9, 4 (Oct. 1991), 336-
367.

