
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Using the Inverted Classroom to teach

Software Engineering

Gerald C. Cannod Janet E. Burge
Miami University Miami University

Michael T. Helmick
Miami University

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/3

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-2007-001

Using the Inverted Classroom to Teach
Software Engineering

Gerald C. Gannod , Janet E. Burge, Michael T. Helmick

Using the Inverted Classroom to Teach Software
Engineering

Gerald C. Gannod
∗

Department of Computer
Science and Systems Analysis

Miami University
Oxford, OH 45056

gannodg@muohio.edu

Janet E. Burge
Department of Computer

Science and Systems Analysis
Miami University

Oxford, OH 45056
burgeje@muohio.edu

Michael T. Helmick
Department of Computer

Science and Systems Analysis
Miami University

Oxford, OH 45056
mike.helmick@muohio.edu

ABSTRACT
An inverted classroom is a teaching environment that mixes

the use of technology with hands-on activities. In an inverted

classroom, typical in-class lecture time is replaced with labo-

ratory and in-class activities. Outside class time, lectures

are delivered over some other medium such as video on-

demand. In a three credit hour course for instance, contact

hours are spent having students actively engaged in learning

activities. Outside of class, students are focused on viewing

3-6 hours of lectures per week. Additional time outside of

class is spent completing learning activities. In this paper we

present the inverted classroom model in the context of a soft-

ware engineering curriculum. The paper motivates the use

of the inverted classroom and suggests how different courses

from the Software Engineering 2004 Model Curriculum Vol-

ume can incorporate the use of the inverted classroom. In

addition, we present the results of a pilot course that uti-

lized the inverted classroom model at Miami University and

describe courses that are currently in process of piloting its

use.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; K.3.2 [Computing

Milieux]: Computers and Education—Curriculum, Com-

puter science education

General Terms
Software Engineering Education

Keywords
Inverted Classroom, Technology in Education, Podcasting

∗Contact Author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08 Leipzig, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
Software engineering is, at its essence, an applied disci-

pline that involves interaction with customers, collaboration
with globally distributed developers, and hands-on produc-
tion of software artifacts. The education of future software
engineers is, by necessity, an endeavor that requires students
to be active learners. That is, students must gain experi-
ence, not in isolation, but in the presence of other learners
and under the mentorship of instructors and practitioners.

An inverted classroom is a teaching environment that mixes
the use of technology with hands-on activities [1]. In an in-
verted classroom, typical in-class lecture time is replaced
with laboratory and in-class activities. Outside class time,
lectures are delivered over some other medium such as video
on-demand. In a three credit hour course for instance, con-
tact hours are spent having students actively engaged in
learning activities. Outside of class, students are focused
on viewing 3-6 hours of lectures per week. Additional time
outside of class is spent completing in-class activities.

Past uses of the inverted classroom have included the use
of video tape, DVD players and downloadable media files [1].
New technologies, such as iPods, and new broadcast method-
ologies, such as podcasting, have made access to multimedia
data more accessible and ubiquitous. While many educa-
tors are exploring a wide variety ways to utilize the iPod for
instruction [2, 3], there has yet to be any consensus on the
most effective use of the technology in the classroom.

In the inverted classroom, learning activities that would
typically are done outside of class, are done in-class in the
presence of the instructor. Passive activities, such as listen-
ing to lectures, are performed outside of class. As a result,
valuable faculty“face” time is not spent merely communicat-
ing information, but rather is spent engaging directly with
students when they are involved in in-depth learning activ-
ities.

Many computing courses ultimately involve hands-on ac-
tivities. While significant long-term projects are a staple of
computing programs, short high-payoff homework and lab
assignments can benefit greatly from a more traditional lab-
oratory environment. In this paper we present the inverted
classroom model [1] in the context of a software engineer-
ing curriculum. The paper motivates the use of the inverted
classroom and suggests how different courses from the Soft-
ware Engineering 2004 Model Curriculum Volume [4] can
incorporate the use of the inverted classroom. In addition,
we present the results a pilot course that utilized the in-
verted classroom model at Miami University and describe

courses that are currently in process of piloting its use.

2. BACKGROUND
This section presents the context of the work described in

this paper.

2.1 Educational Models
Cooperative or collaborative learning was derived from the-

ories relating to motivation and movement towards desired
goals. The idea of cooperative learning comes from the idea
that a social group (e.g., students) when linked together can
achieve some positive goal (e.g., learning) [5]. Collaborative
learning has become popular recently as a means for provid-
ing instruction, especially in a group context [6]. The origins
of distance education harken back to days of correspondence
via mail and other asynchronous media as a means for pro-
viding instruction. Distance education has become more
popular with the inception of the Internet. Institutions such
as the University of Phoenix and the Open University have
fully embraced the use of distance education. In this paper
we describe an approach to learning that utilizes the benefits
of both collaborative and distance learning.

2.2 Software Engineering Curricula

Software Engineering Curriculum 2004 Volume.
The 2004 Software Engineering Model Curriculum was

produced as a resource for institutions wanting to propose
software engineering degree programs [4]. The volume pro-
vides a detailed set of models that are tailorable to different
organization types and includes model curricula that are ap-
plicable for introducing software engineering in either the 1st
or 2nd year of a program. Different models have also been
produced to account for location of an institution (e.g., Eu-
rope vs. North America vs. Australia, etc.).

Software Factory.
Several models for delivering software engineering con-

tent have been suggested, ranging from capstone courses to
industry-required projects. One such model has been sug-
gested by Tvedt, et al. on the software factory [7]. Their
model introduces the notion of using cohorts in a staggered
manner. In the model, students are involved in develop-
ing software as part of project teams with advanced cohorts
leading projects and beginning cohorts acting as develop-
ment teams. This particular model is interesting from the
standpoint of the “Montessori” type model of instruction as
well as in the amount of hands-on activity that occurs on
the projects. In this paper we describe how an inverted
classroom model increases hands-on experience but look at
individual courses rather than a reordering of an entire cur-
riculum.

2.3 Podcasting for Education
A“podcast”is a term used to describe the use of a subscrip-

tion-based broadcasting of video and audio content using
really simple syndication. The original intent was for the
use of podcasting to push content to owners of Apple iPods,
although podcasts are not limited to use of by just iPod own-
ers. The use of podcasting for education has seen increased
adoption as evidenced by the amount of content now avail-
able at the Apple iTunesU site [3]. However, the focus of

podcasting in education has been on production and tech-
nology [2], and little on the pedagogy of using podcasting.
In this paper, we present a model of education that is facil-
itated by podcasting, namely the inverted classroom.

3. INVERTED CLASSROOM

3.1 The Learners
The student of today, the so-called “Millenial”, works from

a mindset that is different than each of the preceding “Gen-
Xer” and “Boomer” generations. Frand identifies ten char-
acteristics common with millenials [8]:

1. Computers aren’t technology - millenial students have
grown up in an environment where computers and the
Internet are ubiquitous. Computers are not a new
technology.

2. The Internet is better than TV - the number of hours
spent on the Internet has increased while the amount
of time watching television has decreased.

3. Reality is no longer real - images and other things
viewed on the Internet or on TV may have been al-
tered. There is little trust for authenticity of many
things.

4. Doing is more important than knowing - the activity
of accumulating knowledge is viewed as less important
than gaining skills that enable them to deal with com-
plex and ambiguous information.

5. Learning more closely resembles Nintendo than logic -
the trial-and-error mentality that comes from the ex-
perience millenials have from playing video games is
far more pervasive than in previous generations.

6. Multitasking is a way of life - it is not uncommon to
find young people doing many things at once (e.g., si-
multaneously listening to music, eating, sending in-
stant messages and watching TV)

7. Typing is preferred to handwriting - millenial students
prefer using word processors or other computing based
recording mechanism over writing.

8. Staying connected is essential - millenial students are
continuously connected using a plethora of devices in-
cluding cell phones, computers, and other hand-held
devices.

9. There is zero tolerance for delays - while some of us can
remember the days when TV stations would go off the
air, millenial students expect 24x7 access to services
and people.

10. Consumer and creator are blurring - there is a belief
that there is little difference between the owner, cre-
ator, and user of information.

Foreman identifies a number of learning theory essentials [9].
Specifically, he states that the ideal learning situation is cus-

tomized, provides immediate feedback, is constructive, mo-

tivates students to persist, and builds enduring conceptual

structures. In regards to customization, Foreman indicates
that optimal learning addresses learning styles and “prox-
imal zones”. That is, optimal learning should not appear

foreign to a learner. Optimal learning is constructive means
that allows students to explore multisensorial environments
through active discovery. Persistence refers to motivating
students to gain a desire to pursue more knowledge in a
particular area. Finally, optimal learning promotes develop-
ment and committment of knowledge to long-term memory
in order to integrate that knowledge for everyday practical
usage.

As educators of software engineering, it is our task to de-
termine how we can connect millenial students that are de-
scribed as Frand indicates, with the characteristics of the
ideal learning environment described by Foreman.

3.2 Inverted Classroom
The traditional instructor-centered educational model is

based on the use of class contact time (e.g., class time) on
the delivery of information through lecture. In this model,
the expectation is that an instructor impart knowledge of
some particular topic. A traditional model is limited by the
constraint that any particular class meeting is limited to a
finite number of minutes, and that there are a finite num-
ber of class meetings. The challenge often associated with
instructor-centered education is the lack of in-class active
learning. Specifically, while instructors often do mix lecture
with in-class activities that facilitate active learning, there is
a tension between use of that class time for those activities
versus the need to “cover” topics found on a syllabus.

More progressive models of instruction includes collabora-

tive learning, where students are focused on some particular
task and must, as a group, identify the relevant topics, the-
ories, and methodologies that are releveant in completing
that task. For instance, the work by Dietrich and Urban
demonstrated the use of collaborative and active learning
in database courses [6]. A potential problem with collabo-
rative learning lies in the fact that it becomes difficult to
assess whether certain educational outcomes are achieved.
Thus, collaborative learning must be tempered with an ap-
propriate amount of instructor-centered lecture to ensure
topic coverage.

A growing trend towards distance learning, especially in
for-profit institutions, has taken advantage of the Internet
by providing access to content for use by students in self-
paced environment. The benefit of distance learning is that
the learner can access information at their own pace and
can continually reference recorded material. That is, in
some models where lecture materials are provided through a
recorded medium, students can pause, fast-forward, reverse,
and replay lectured content. Such models rely upon student
motivation to manage course requirements and learning ac-
tivities and thus self-motivation is paramount for consistent
success. Finally, much of the learning that occurs in such
environments is asynchronous and thus the ability to pro-
vide the benefits of collaborative and active learning is non-
existent.

An inverted classroom approach for instruction “inverts”
the traditional instructor-centered model while taking ad-
vantage of the benefits of both distance learning and col-
laborative and active learning [1]. In an inverted classroom,
lecture content is provided over some asynchronous medium.
Students access the lecture content outside of class during
the non-contact hours of a semester. During the contact
hours (e.g., the“normal” class periods) students are involved
in learning activities in the form of in-class assignments, lab-

oratories, and discussions. Table 1 shows some of the dif-
ferences between the inverted classroom and the traditional
lecture model.

The benefits of using an inverted classroom model are
many. First, with respect to coverage, since the lecture con-
tent is delivered asynchronously, there are no limitations
imposed by a finite number of class minutes or meetings.
Second, again since the content is delivered asynchronously,
students can access, view, and review material at their own
pace. Third, by having the in-class component of the course,
students can be engaged in active learning with other learn-
ers on a regular basis. Specifically, by having the students
working in a laboratory environment where discussion be-
tween peers is encouraged, learners can take advantage of
the benefits that result from having to explain concepts to
each other, thus reinforcing and solidifying their own under-
standing of those concepts. From the standpoint of active
versus passive learning, the inverted classroom model has
the effect of pushing passive learning (e.g., listening to lec-
tures) away from the classroom and to the home, library,
or other viewing location. Active learning, then, is pulled
to the classroom. In addition, since the instructor is freed
up from having to lecture during the in-class period, the in-
structor is able to engage with the students when the active
learning is occurring.

3.3 Learners and the Inverted Classroom
The inverted classroom model addresses many of the Frand

characteristics of the millenial student. Specifically, the in-
verted classroom addresses the following characteristics:

4. Doing is more important than knowing - the inverted
classroom model takes the focus away from the lecture
and places it upon the extensive use of active learn-
ing. Software engineering is a highly applied activity.
Learning in this context depends on repeated applica-
tion of techniques in order to gain experience.

5. Learning more closely resembles Nintendo than logic -
the inverted classroom provides more opportunity for
iteration. Software engineering processes are highly it-
erative. The ability to define and refine different arti-
facts in the collaborative environment provided by the
inverted classroom offers many opportunities to use it-
eration to refine artifacts and thus reinforce student
knowledge and capabilities.

6. Multitasking is a way of life - content delivery through
podcasted lectures allows students to do something
that comes natural to them. Since content is deliv-
ered via podcasting, students can take advantage of
the ability to pause, restart, and review lectures at
their leisure or in and amongst many of the tasks they
may be undergoing at any given time.

9. There is zero tolerance for delays - the inverted class-
room facilitates providing immediate feedback when
that feedback is most important. In the inverted class-
room model, feedback can be provided immediately
during the in-class contact hour when learning activi-
ties are being performed. In addition, if an instructor
is brave enough to wade into the instant messaging
waters, immediate feedback can also be given at other
times.

T r a d i t i o n a l I n v e r t e d T r a d i t i o n a l I n v e r t e dP r e p f o r l e c t u r e S t a n d a r d p r e p t i m e S t a n d a r d p r e p p l u s p r e pf o r a d d i t i o n a l m a t e r i a l(a s d e s i r e d) , p r o d u c er e c o r d e d l e c t u r e (1 s to f f e r i n g) a t l e a s t t w od a y s p r i o r t o c o n t a c th o u r N / A N / A
P r e p f o r c l a s s S a m e a s l e c t u r e p r e p D e v e l o p l e a r n i n g a c t i v i t yb e f o r e m e e t i n g t i m e R e a d i n g s R e a d i n g s , v i e w p o d c a s t sb e f o r e c l a s sA t t e n d a n c e N / A N / A O n l y i f r e q u i r e d R e q u i r e dL e a r n i n gA c t i v i t i e s I n s t r u c t o r f e e d b a c kd e l a y e d , c o n t a c t a n dg u i d a n c e l i m i t e d t o o f f i c eh o u r s I n s t r u c t o r f e e d b a c k i np r o c e s s , c o n t a c t d u r i n ge n t i r e c o n t a c t h o u r O u t s i d e c l a s s I n c l a s s / O u t s i d e c l a s s

I n s t r u c t o r S t u d e n t

Table 1: Differences between Traditional and Inverted Classroom Models

With respect to Foreman’s optimal learning situations,
the inverted classroom is:

• Customized - the use of podcasting allows the student
to focus on passive content as much as needed, when
needed. The hands-on learning activities facilitate cus-
tomized instruction by allowing the instructor to be
more involved in the active learning of the students.

• Provides Immediate Feedback - the in-class activities
during contact hours allow the instructor to provide
immediate feedback on a more regular basis.

• Constructive - the combination of the use of lecture,
screencasts video blogs, and other supplemental video
along with a more hands-on classroom experience, ex-
poses students to a constructive environment rife with
active discovery.

• Motivating - persistent hands-on activities allow stu-
dents to observe the purpose for many of learning out-
comes for a course.

• Enduring - the inverted classroom provides an oppor-
tunity for reinforcement of concepts. The reinforce-
ment and hand-on application assists in helping stu-
dents commit knowledge to long-term memory.

3.4 Instructors and the Inverted Classroom
Unfortunately, the success of a new teaching paradigm

does not rest solely on its ability to affect student learning.
The most successful educational initiatives are those that
provide benefits to both teacher and learner. The inverted
classroom falls into that category in a number of ways.

First, it puts the primary focus of the class on the part
of teaching that most professors find the most rewarding:
interaction with their students. Even the most interactive
lectures are likely to actively involve only a subset of the
students. In the inverted classroom, the instructor works
directly with individual students during contact hours. Most

of their time, in this model, can be spent with those students
that are struggling, as opposed to the traditional lecture
where most of the questions posed during discussion come
from the stronger students (while the strugglers are more
likely to either be absent or sitting quietly at the back of
the room).

Second, in-class hands on activities not only engage the
learner they engage the instructor. The conventional wis-
dom in teaching is that the best class taught on a subject
is when an instructor is teaching it for the third time. Dur-
ing the first time, the primary goal is instructor survival.
During the second, much of the preparation time is spent
fixing the initial mistakes. Then, on the third teaching, the
instructor has confidence with the material and their pre-
sentation. So what about the next few times? The risk
then is that boredom sets in. If the instructor is not excited
about the material it is hard to hide it from the students.
Also, even the most interesting class has at least one topic
that the instructor dreads teaching. For a computer archi-
tecture course, it may be binary arithmetic. For software
engineering, it may be configuration management. With
the inverted classroom, an instructor gives the lecture once,
adding changes as needed from semester to semester, and
instead can focus the bulk of their time and energy on the
part of the class that is exciting and different from semester
to semester: their students. Each semester brings a fresh
group of students with their own individual approaches to
the material: the best antidote to instructor boredom.

Third, the inverted classroom provides an easy way to
involve guest speakers in classroom instruction. In a class
that covers a broad subject area, such as software engineer-
ing, not all instructors will be equally adept at all topics.
In addition, it may be beneficial to bring in some “outside
voices” such as bringing in experienced industry profession-
als. Trying to schedule guest speakers for a traditional lec-
ture can be difficult. With the inverted classroom, speakers
can deliver their portion of the lecture at their convenience.
This relieves the instructor from having to structure their

syllabus around guest speaker availability. Podcasting guest
speakers also removes the risk of a guest speaker turning
what should be an instructional experience for the students
into a recruiting pitch for their company.

3.5 Lectures through Podcasting
In previous work, we described how we used podcasting

as the preferred medium for delivering content to students
within an inverted classroom setting [10]. In that work,
course lectures were produced as podcasts approximately
one week prior to the corresponding assignments. The soft-
ware used to produce the podcasts (all for the Mac) included
ProfCast [11], for capturing Microsoft Powerpoint and Ap-
ple Keynote presentations with voice overs, Snapz [12], for
capturing full-motion presentations of software use (e.g., a
“screencast”), iMovie [13], for capturing full-motion talking
head lectures, and iWeb [13], for deploying the podcast on
a standard web server. Blackboard [14] was used to save
and deploy Powerpoint and PDF files, as well as for grade-
book and assignment management. Students used either
the iTunes music software system as a podcasting client, or
a non-podcasting client such as a web browser to view video
on a web page.

For our current semester’s pilot courses using inverted
classroom techniques, all content is being delivered through
the Computer Science Courseware System (CSCW) [15].
The CSCW system has support for delivering podcasts di-
rectly to podcasting client programs, such as Apple’s iTunes.
Students are free to receive lecture podcasts automatically or
to interactively download the content direct from the CSCW
Web site.

3.6 Learning Activities
Table 2 shows a general comparison of the quality and

depth of learning activities for traditional and inverted class-
room models of instruction. The experience of instructors
may vary, but in general these comparisons hold. The num-
ber of assignments, when using the inverted classroom model,
can be much higher than in the traditional classroom model.
Specifically, for some courses there can be one assignment
per course contact hour (minus exams). As a result, it is
much easier to have learning activities address specific out-
comes. This is contrasted with traditional homework as-
signments or projects that might target several learning out-
comes at once. The feedback that can be provided to a stu-
dent in the inverted classroom model is in many instances
immediate. The level of interaction with students during
course contact hours provides the ability to point students
in the right direction and to give guidance as needed. In this
way, students can be steered away from pitfalls and incorrect
assumptions, allowing the students to use trial-and-error in
their problem solving process.

Finally, with respect to assignment depth, learning activi-
ties in the inverted classroom model, due to time constraints,
contain less depth than in the traditional model. This can be
alleviated by creating assignments that span longer periods
of time (two class periods). One model that has been em-
ployed is to assign multi-part assignments with initial com-
pletion occurring in class, and the final completion occurring
outside of class.

3.7 Issues
A number of concerns exist regarding the inverted class-

I n v e r t e dT r a d i t i o n a l L o w H i g hL o w H i g hD e l a y e d I m m e d i a t eH i g h L o wN u m b e r o f A s s i g n m e n t sO u t c o m e c o v e r a g eF e e d b a c kD e p t h p e r a s s i g n m e n t
Table 2: Comparison of Learning Activities

room model of instruction. In this section, we describe each
and provide discussion.

I like to interact with students during lecture.
Many times during lecture in the traditional lecture model,

questions and discussion cause a “light” turn on in a stu-
dent’s face. The lack of interaction in a podcasted lecture,
as such, removes the ability of a student to ask a question
to clarify some idea. To address this concern, students are
asked to write down their questions and the time index of
the podcasted material and to bring those questions to class.
A certain amount of time is then devoted at the beginning
of class to answer those questions. In addition, by using
instant messaging, students can ask questions regarding a
lecture being viewed. The instructor has the option of de-
clining the message or answering it.

Interaction with students is a cornerstone of the inverted
classroom experience. The amount of interaction with stu-
dents actually increases with this model. Anectdotally, we
have found that the increased contact has made it easier to
identify which students are struggling and which students
are excelling.

Do students come to class?.
Student attendance should be mandatory when using the

inverted classroom model. Since learning activities equate
to graded homework assignments, there is often no choice
as to whether students must attend or not. Skipping a class
period results in a loss of points.

Do students watch the podcasts?.
It must be stressed to students that in order for students

to be able to complete in-class assignments, the podcasts
must be viewed and notes taken. By composing the learn-
ing activities so that it relies on the lectured material, stu-
dents quickly learn that the lecture materials are important
and must be viewed. Our experience has shown that fail-
ure to keep current on the lectured material often results in
inability to complete assignments.

What is the overhead?.
The startup overhead of adopting the inverted classroom

model can be significant. In the first semester that a course
is taught using this model, lectures must be produced. From
the standpoint of preparation time, the difference between
the inverted classroom model and the traditional model is
little. However, the production of the podcasts amounts to
setting aside the time to record the lectures, which ends up
being added up as prep time. Normally, the lecture would
just be delivered during the class contact hours, which for a

3 credit hour course amounts to about 3 hours a week. The
amount of time “lecturing” in the inverted classroom model
varies since the amount of content to be delivered can be as
little or as much as is wanted. Fortunately, in subsequent
semesters, the amount of time producing lectures becomes
much smaller since only short addendums or updates are
needed.

Another aspect of the overhead is the production of learn-
ing activities. For some courses, new activities will need to
be developed each semester. The number of learning ac-
tivities that are produced increases significantly with the
inverted classroom model since you may need to have one
assignment ready per class period. Grading also increases
since learning activities need to be evaluated. However, you
can incorporate learner peer evaluation more readily in the
inverted classroom model.

It doesn’t fit my style of teaching.
The inverted classroom model is learner-centered. It fo-

cuses primarily upon the student and upon increasing the
amount of interaction between the student and instructor.
The approach is intended to address issues related to the mil-
lenial student and less upon the instructor teaching the mil-
lenial. Ultimately, as with any teaching method, the most
important factor is the learning outcome. Instructors may
be effective in any style of teaching; the inverted classroom
model is an alternative.

How does this work for large classes?.
The success of the inverted classroom model is dependent

on the ability of the instructor to interact with the students
as they complete their in-class activities. At Miami Uni-
versity, the class sizes for the pilot courses was twenty-four
(24) in Spring 2007. In our current semester’s pilot courses,
the enrollment is forty-three (43) students for two sections
of a data structures course and over eighty (80) students for
three sections of a programming fundamentals course. For
larger classes, providing the desirable amount of instructor-
student interaction would necessitate breaking these classes
into smaller sections and/or providing support from teach-
ing assistants. For most software engineering courses, this
model would require computer equipped classroom labora-
tories so that the students would have access to the hard-
ware and software required to complete their projects. Many
schools with large Computer Science programs already fol-
low a lecture-lab model where lectures are taught by in-
structors and labs by teaching assistants. For the inverted
classroom, it is important that the instructor themselves be
present and involved during the in-class activities in order
to realize many of the benefits of this approach.

4. SE CURRICULUM
Software engineering is a process-centric discipline. The

education of students in this field is best achieved through
repetitive, hands-on, activities and projects in a collabora-
tive environment that fosters communication between stake-
holders. By using the inverted classroom, these activities
can be easily modeled and repeated in order to provide stu-
dents with a strong foundation on various aspects of the
field.

In this section, we present a model for integrating the
use of the inverted classroom model for different courses

into the software engineering curriculum. The curriculum
that we present is based on the IEEE/ACM Software En-
gineering Model Curriculum [4] (e.g., the SE 2004 Volume)
and focuses primarily upon the software engineering specific
courses. The entire curriculum includes some overlap with
the Computer Science Model Curriculum [16]. In the dis-
cussion below, we consider the Computer Science courses
that serve as a direct line of pre-requisites for the SE 201
Introduction to Software Engineering course. Finally, the
model focuses on starting software engineering in the sec-
ond year [4].

4.1 Overview of SE Courses
The core software engineering curriculum is composed of

the following sequence of courses [4]:

CS 101I Fundamentals of Programming - covers fundamen-
tal topics in programming including control structures. The
“I” indicates an “imperative first” treatment of computing.

CS 103I Data Structures and Algorithms - covers data struc-
tures and data abstractions.

SE 201 Introduction to Software Engineering - covers the
foundations for software engineering by covering the prin-
ciples and concepts of the field.

SE 211 Software Construction - covers low-level design is-
sues

SE 212 Software Engineering Approach to HCI - covers the
design and implementation of user interfaces

SE 311 Software Design and Architecture - covers advanced
software design including distributed systems and software
architecture

SE 321 Software Quality Assurance and Testing - covers soft-
ware quality and testing

SE 322 Software Requirements Analysis - covers software
requirements elicitation, specification, and analysis

SE 323 Software Project Management - covers project man-
agement issues

SE 400 Software Engineering Capstone - provides students
experience in working on a year long project

SE 4xx Software Engineering Special Topics - special top-
ics in software engineering; content determined by faculty

4.2 Inversion
In the remainder of this section, a model of how inver-

sion applies to each of the courses listed above is presented.
The content for each of the courses, as delivered through
podcasting or some other medium, remains the same as is
defined in the SE 2004 Volume [4]. Below we describe how
learning activities can be structured during course contact
hours to take advantage of the inverted classroom model.

CS 101I Fundamentals of Programming.
The Computing Curricula 2001 Volume does not give spe-

cific guidance on learning activities for this course [16]. How-
ever, this course is programming intensive, and thus is nat-
urally suited for a laboratory dominated experience. The
course contact hours in this course can be devoted to pro-
gramming assignments performed in class.

CS 103I Data Structures and Algorithms.
As with the CS 101I course, the data structures and algo-

rithms course is programming intensive and thus the course
contact hours can be dominated by programming activities.

SE 201 Introduction to Software Engineering.
The traditional model for teaching SE 201 involves pre-

senting lectures on a wide variety of topics ranging from soft-
ware project inception through delivery and maintenance.
In our experience teaching this course using a traditional lec-
ture model, the homework assignments are used to provide
learning activities on each of the major topics, and a sig-
nificant semester long project provides teaming experience.
Due to the amount of content in the course, in-class activi-
ties in the form of laboratories or small group experiences are
limited. The use of inversion in this course alleviates three
problems: coverage, experience, team coordination. With
respect to coverage, use of the inverted classroom model al-
lows the instructor to cover as much material as desired in
the podcasting (or other delivery) format. In regards to
experience, the freed contact hours can be used by the in-
structor to model each of the software engineering activities
in detail. For instance, when performing the requirements
elicitation activity, the instructor can use the time to discuss
an example of eliciting requirements, and involve the stu-
dents in that example. In regards to team coordination, the
contact hours can be used by student groups to hold meet-
ings. The instructor can then be present during a number
of those meetings to provide guidance, answer questions, or
to observe student decision making processes.

SE 211 Software Construction.
The focus of the Software Construction course in the SE

2004 curriculum is on low-level design issues such as the use
of parsers, the definition of protocols, application of formal
methods, and tools for a wide variety of purposes including
debugging, performance tuning, and model-driven develop-
ment [4]. With such a wide variety of topics, all of which are
tool driven and require knowledge and experience in the use
of those tools, the application of the inverted classroom is
natural. The course contact hours can be devoted to short
in-class assignments that focus on the use of the tools. The
benefit of the inversion of this course is that the instructor
and teaching assistants can be present in laboratory-like en-
vironment, providing guidance on how to resolve various is-
sues that arise in using the tools. In our experience with sim-
ilar kinds of environments, we have found that short single
session assignments provide students with initial experience
on getting started with a technology. Longer multi-session
assignments, on the other hand, provide students the oppor-
tunity for self-paced discovery needed for optimal learning
to occur.

SE 212 Software Engineering Approach to HCI.
The SE 2004 Volume identifies the following as suggested

assignments and laboratories [4]: evaluation of user inter-
faces using heuristic evaluation, evaluation using videotaped
observations, protyping of interfaces, writers workshops for
critiquing prototypes, and construction of significant user in-
terfaces using rapid prototyping. The process of developing
user interfaces is highly iterative and requires a great deal
of interaction with a user. In the traditional model, where
homework and laboratories are performed outside of class,
getting the amount of feedback necessary to properly model
the UI design activity can be a challenge. By using the in-
verted classroom model, the contact hours can be used to
thoroughly involve students in a collaborative and iterative
experience that involves users and other participants.

SE 311 Software Design and Architecture.
The SE 2004 Volume identifies the following topics as

relevant to this course: design patterns, study of middle-
ware, examination of case studies, application of metrics,
and study of reverse and re-engineering [4]. In regards to
learning activities, the SE 2004 volume is sparse. However,
given the above topics, the course contact hours in an in-
verted classroom model can focus on short, one hour prac-
tice activities or longer case study activities that reinforce
knowledge in the above areas. Software design activities, es-
pecially the creation of models, benefit greatly from iteration
and reinforcement. The assignments and activities provided
during class contact hours in this course can also include the
analysis of requirements in order to construct software archi-
tectures, the use of modeling and different modeling tools,
and analysis and review of design models.

SE 321 Software Quality Assurance and Testing.
Software testing is a significant activity in the software

development process. The SE 2004 Volume identifies the
use of automated tools, practice in testing a variety of sys-
tems, application of different testing techniques, and use of
inspections as the primary laboratory and assignment ac-
tivities for this course [4]. By using the inverted classroom
model, contact hours can be devoted solely to the activity of
testing software or on the application of alternative quality
assurance techniques, such as design reviews, inspections,
or formal analysis. A large number open-source software
projects that are available for use in such an activity, pro-
viding the opportunity for a rich experience. The in-class
contact hours provide the opportunity to perform all of these
course activities in a collaborative manner.

SE 322 Software Requirements Analysis.
The SE 2004 Volume identifies the following activities and

labs as being relevant for the requirements activity [4]: con-
struction of requirements, analysis of systems to determine
qualities and to reverse engineer requirements, interviewing
users, use of tools for managing requirements, modeling of
requirements with UML, and resolving feature interactions.
An important aspect of the requirements activity is the in-
teraction with customers and users to determine the desired
behaviors and applicable constraints for the system to be
developed. Using inversion provides an opportunity to reg-
ularly schedule contact with customers or users. The ded-
icated contact hours also provides the instructors with the
opportunity to demonstrate various aspects of the require-
ments phase through role playing or other activities that
model the practice. In addition, the contact hours can be
used to provide students with experience in using the tools
necessary to manage and model requirements.

SE 323 Software Project Management.
The SE 2004 Volume identifies a number of activities that

are appropriate for laboratories and assignments in the SE
323 course [4]. These include gaining experience using soft-
ware project management tools, creating cost estimates for
projects, evaluating software licenses, and developing project
and configuration management plans. Each of these activi-
ties would benefit from the collaborative experience provided
by inversion of the classroom.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 51 T h e s t u d e n t c a n d e s i g n a p p l i c a t i o n s t h a t i n c o r p o r a t e b u s i n e s sp r o c e s s e s a s a f u n d a m e n t a l d r i v e r f o r p a r t i t i o n i n g X2 T h e s t u d e n t c a n i d e n t i f y a n d d e s c r i b e t h e p r i m a r y i s s u e s r e l a t e d t ot h e u s e o f s e r v i c e o r i e n t e d a r c h i t e c t u r e s a n d s e r v i c e o r i e n t e d X3 T h e s t u d e n t c a n d e v e l o p w e b s e r v i c e s u s i n g C # a n d t h e A S P . N E Tp l a t f o r m3 a T h e s t u d e n t c a n c r e a t e C # p r o g r a m s X X X X X3 b T h e s t u d e n t c a n c r e a t e w e b s e r v i c e s u s i n g C # X X3 c T h e s t u d e n t c a n c r e a t e C # a p p l i c a t i o n s t h a t u t i l i z e w e b s e r v i c e s X X4 T h e s t u d e n t c a n d e v e l o p w e b s e r v i c e s u s i n g J a v a a n d t h e A p a c h eA x i s p l a t f o r m4 a T h e s t u d e n t c a n c r e a t e J a v a s e r v i c e s X X4 b T h e s t u d e n t c a n c r e a t e J a v a a p p l i c a t i o n s t h a t u t i l i z e w e b s e r v i c e s X X X X X5 T h e s t u d e n t w i l l b e a b l e t o i d e n t i f y t h e p u r p o s e o f v a r i o u st e c h n o l o g i e s i n t h e w e b s e r v i c e s s t a c k i n c l u d i n g X M L , S O A P , W S D L ,a n d W S D L X X5 a T h e s t u d e n t c a n c r e a t e a n X M L s c h e m a X5 b T h e s t u d e n t c a n c r e a t e a n X M L d o c u m e n t X5 c T h e s t u d e n t c a n i d e n t i f y a n d r e c o g n i z e d i f f e r e n t a s p e c t s o f a n X M LS O A P m e s s a g e X5 d T h e s t u d e n t c a n i d e n t i f y a n d r e c o g n i z e t h e r e l a t i o n s h i p b e t w e e nS O A P a n d W S D L X5 e T h e s t u d e n t c a n i d e n t i f y a n d r e c o g n i z e d i f f e r e n t a s p e c t s o f a n X M LW S D L d o c u m e n t X5 f T h e s t u d e n t c a n d e s c r i b e d i f f e r e n t q u a l i t y a t t r i b u t e s r e l a t e d t oW S D L / S O A P a n d R E S T X

L e a r n i n g A c t i v i t i e s

Table 3: Outcomes Matrix for Pilot Course

SE 400 Software Engineering Capstone.
Contact hours for the capstone course should be entirely

devoted to project activities including the holding of meet-
ings, construction of software development artifacts, soft-
ware development, and testing. The lecture component of
the capstone can then be devoted to the delivery of special
topic content or other information that is perhaps relevant
to the completion of the assigned projects.

SE 4xx Special Topics in Software Engineering.
Special topics courses in a software engineering program

can vary widely depending on the focus of various instruc-
tors. Later in this paper describe our experiences with a
special topics course on service-oriented computing and web
services.

5. PRELIMINARY RESULTS
To date we have applied the use of the inverted class-

room in one computing course at Miami University. The
first course to undergo the piloting of the inverted classroom
for computing was a special topics course on service-oriented
architecture (SOA) and web services [10]. As of the writing
of this paper, two more courses are in progress using this
model, a CS101I equivalent course entitled “Fundamentals
of Programming and Problem Solving”and a CS103I equiva-
lent entitled “Data Abstractions and Data Structures”. Two
more courses are scheduled for the Spring Semester (a re-
peat of the SOA course and a repeat of the data structures
course).

5.1 Service Oriented Architecture

The offering of this course was the first to use the inverted
classroom model for computing at Miami University. The
podcasted lecture materials for this course consisted of ap-
proximately sixty-five (65) separate podcast episodes rang-
ing in duration of just a few minutes to approximately fifty
(50) minutes. The lecture materials consisted of video blogs,
Powerpoint presentations with voice overs, and screencasts
showing examples of using various software engineering tools
including sessions with Eclipse, the Eclipse debugger, Visual
Studio, and other tools relevant to the development of web
services.

Table 3 shows a course outcomes matrix that maps course
outcomes to the learning activities for the course. The gray
bars indicate top level outcomes for which there are refined
outcomes. For instance, outcome four (4 The student can
develop web services using Java and the Apache Axis plat-
form) has been refined to have two child outcomes (4a The
student can create Java services and 4b The student can cre-
ate Java applications that utilize web services). The course
consisted of fifteen (15) learning activities that were often
1 to 2 contact hours in duration. The table shows which
course outcomes were covered by various learning activities.

The course also included a significant project which stu-
dents proposed at midterm and completed by the end of the
semester. Student response to the course was overwhelm-
ingly positive, especially in regards to the use of the inverted
classroom model.

Table 4 shows an indirect assessment of one of the out-
comes for the course. While there is no long-term data from
which to compare these results with, it does show that at

the very least from the standpoint of the learners, that an
outcome of the course was being met. In the table, the left
side of each column shows number of responses at the be-
ginning of the semester and the right side of each column
shows the responses at the end of the semester. The data
shows that from the viewpoint of the students, that some
level of learning occurred, thus moving the responses from
largely “disagree” to “strongly agree”.

10

12

14

I can create C# applications that utilize web services

Pre semester Post semester

0

2

4

6

8

S
tr
o
n
g
ly

A
g
re
e

A
g
re
e

N
e
it
h
e
r

A
g
re
e
o
r

D
is
a
g
re
e

D
is
a
g
re
e

S
tr
o
n
g
ly

D
is
a
g
re
e

N
o
t

A
p
p
li
ca
b
le

Table 4: Outcome 3c Assessment

A peer review of the course from a colleague that attended
the course for the entire semester yielded some of the follow-
ing comments:

• The instructor used a variety of class activities, as ap-

propriate. The primary in-class activity was the in-

class assignments which is appropriate for the inverted

classroom model.

• The visual presentation was clearly visible and legible.

The software demonstration podcasts were particularly

effective learning tools. I often found myself going back

over these podcasts to complete an in-class assignment

or to pick up a point that I had glossed over. I may try

to do something similar to this the next time I need to

introduce a piece of software, as students tend to tune

out during software demonstrations in class.

A few comments regarding certain issues with the inverted
classroom were as follows:

• The instructor encouraged student participation and

gave students time to respond. Students had the op-

portunity to ask questions about the podcasts at the be-

ginning of each class. This did not happen very often.

I am not sure why it happened this way. Jerry seemed

very open to questions and very non-threatening when

a student asked a question. There were some ques-

tions about assignments, but very few about lecture

material. Perhaps the inverted classroom model elicits

fewer questions due to the time gap between viewing the

podcast material and seeing the instructor or perhaps

the students did not have time to view the podcasts.

• The students seemed to be actively engaged in the les-

son. Certainly the students were actively engaged in

the in-class assignment which is one of the beauties of

the inverted classroom model. I’m not sure everyone

was engaged during the introduction at the beginning.

Some students were working at their laptops and there

was a small group of students in the back that seemed

to carry on their own conversation. Perhaps as Jerry

perfects this style of teaching, the in-class assignments

can be distributed ahead of time and students can get

to work more quickly.

5.2 Data Structures
In the Fall Semester of 2007 we are in process of piloting

the use of the inverted classroom for the data abstraction
and data structures course. The course is using the same
model as the one used for the web services course in the
sense that podcasting is being used as the primary medium
for delivering course content, and that the learning activ-
ities are performed during the course contact hours. The
course consists of two (2) sections with a total of three (3)
contact hours per week for each. Enrollment in the course
consists of approximately forty (40) students. The philoso-
phy of the course is based on the notion that repetition and
reinforcement when learning programming is paramount. As
such, rather than just a handful of programming projects, a
greater volume of short programming assignments are given
in class. For this course, approximately twenty-four (24)
programming assignments are planned in addition to one
significant programming project.

5.3 Fundamentals of Programming
For the Fall Semester of 2007, three sections of Fundamen-

tals of Programming and Problem Solving at Miami Uni-
versity are using the inverted classroom to deliver lecture
content to over eighty (80) students. Applying the inverted
classroom to this class is significant since we are reaching a
large number of students in their first programming class.
Fundamentals of Programming and Problem Solving is the
first course for our computer science majors, minors, and is
taken by students from other majors such as physics, math-
ematics, and management information systems.

In this particular pilot section, we are using a hybrid tech-
nique in applying the inverted classroom. Our three (3)
contact hours each week are divided up into one (1) hour
of lecture time and two (2) hours of lab time. The lecture
hour is used as a time to review issues from the previous
week, discuss issues with the current weekly programming
assignment, and to preview the material in the upcoming
podcasts. For this course, our podcast lectures are targeted
towards specific topics and are purposely kept short in length
(15 to 30 minutes). This allows students to digest one topic
at a time, and apply this knowledge in the lab.

In previous offerings of this course, students would com-
plete eight (8) programming assignments (each two weeks
in length). This schedule forced multiple topics to be intro-
duced into each programming assignment, often causing con-
fusion about when and how to apply each concept. For the
current semester, we have planned for twenty-nine (29) pro-
gramming assignments. Fourteen of these assignments are
shorter lab assignments that are intended to be completed in
a single one (1) hour lab session. Each of these assignments
introduces exactly one new concept into the body of pro-
gramming knowledge. The remaining contact hour is used to
allow students to begin working on the larger programming
assignment for the week. These programming assignments
build on the concept introduced in the weekly lab session,
incorporate concepts from previous weeks, and sometimes

introduce a second concept for the week. This gradual in-
troduction to programming concepts and constructs allows
students to achieve success rapidly. The use of CSCW’s [15]
integrated automatic grading allows students to receive in-
stant feedback on the functionality of their code and the
time spent working the lab with the instructor present helps
to set students in the correct direction on the project.

In addition to the introduction of the inverted classroom
to this course, we have simultaneously introduced pair pro-
gramming into the course. After ensuring that all students
individually could work in the programming environment
and successfully submit programs for grading, all students
were paired (with groups of three in sections with odd en-
rollment numbers). The use of pair programming has been
shown to increase student confidence in their programs, to
make programming more enjoyable experience, and to aid
in student learning simply by encouraging greater partici-
pation in the homework process [17]. A recent study has
shown that pair programming has benefits for all students,
and even more beneficial for women in computing-related
majors in terms of confidence and retention [18]. As addi-
tional motivation, interviews with students have shown that
students view pair programming as beneficial in their learn-
ing to program [19].

6. CONCLUSIONS AND FUTURE WORK
At Miami University, the inverted classroom model of in-

struction has been used in a variety of fields including eco-
nomics, marketing, and now computer science. The ap-
proach takes advantage of the benefits of both collabora-
tive learning and distance learning while at the same time
targeting the millenial student. In this paper, we have pre-
sented a model for using the inverted classroom for software
engineering related courses and described our experiences in
using the inverted classroom on a few pilot courses. At the
conclusion of the Fall 2007 Semester, we plan on interview-
ing students on both our Fundamentals of Programing and
Problem Solving and Data Structures and Data Abstrac-
tion courses. These interviews will capture the students’ as-
sessment of how inverted classroom techniques impact their
learning and success in software engineering courses. Future
investigations include piloting the inverted classroom model
on a few select courses including the SE 201 Introduction to
Software Engineering course. In addition, we will be study-
ing the impact of using the inverted classroom on instructor
workload as we embark on repeat use of the approach in the
Service Oriented Architecture and Web Services Course as
well as the Data Structures and Data Abstraction course at
Miami University.

7. ACKNOWLEDGEMENTS
Special thanks to Dr. Donald Byrkett who audited and

provided the peer review on the pilot course.

8. REFERENCES
[1] Maureen J. Lage, Glenn J. Platt, and Michael Treglia.

Inverting the Classroom: A Gateway to Creating an
Inclusive Learning Environment. Journal of Economic

Education, 31(1):30–43, Winter 2000.

[2] Gardner Campbell. There’s Something in the Air:
Podcasting in Education. EDUCAUSE Review,
40(6):32–47, November/December 2005.

[3] iTunesU. http://www.apple.com/education/itunes u/
(Visited Oct 10, 2007).

[4] Joint Task Force on Computing Curricula. Software
Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Proposals in Software
Engineering. http://sites.computer.org/ccse (Visited
October 03, 2007), 2004.

[5] David W. Johnson and Roger T. Johnson.
Instructional Goal Structure: Cooperative,
Competitive, or Individualistic. Review of Educational

Research, 44(2):213–240, Spring 1974.

[6] Suzanne W. Dietrich and Susan D. Urban. A
Cooperative Learning Approach to Database Group
Projects: Integrating Theory and Practice. IEEE

Transactions on Education, 41:14, 1998.

[7] John D. Tvedt, Roseanne Tesoriero, and Kevin A.
Gary. The Software Factory: Combining
Undergraduate Computer Science and Software
Engineering Education. In Proceedings of the 23rd

International Conference on Software Engineering,
pages 633–642. IEEE, 2001.

[8] Jason L. Frand. The Information-Age Mindset:
Changes in Students and Implications for Higher
Education. EDUCAUSE Review, 35(5):15–24,
September–October 2000.

[9] Joel Foreman. Next-Generation Educational
Technology versus the Lecture. EDUCAUSE Review,
35(5):12–22, September/October 2003.

[10] Gerald C. Gannod. WIP: Using podcasting in an
inverted classroom. In Proceedings of the 37th IEEE

Frontiers in Education Conference. IEEE, 2007.

[11] Profcast. http://www.profcast.com (Visited Oct 6,
2007).

[12] Snapz pro. http://www.ambrosiasw.com (Visited Oct
6, 2007).

[13] ilife. http://www.apple.com/ilife (Visited Oct 6, 2007).

[14] Blackboard. http://www.blackboard.com/us/index.Bb
(Visited Oct 6, 2007).

[15] Michael T. Helmick. Integrated online courseware for
computer science courses. In ITiCSE ’07: Proceedings

of the 12th annual SIGCSE conference on Innovation

and technology in computer science education, pages
146–150, New York, NY, USA, 2007. ACM Press.

[16] Joint Task Force on Computing Curricula. Computing
Curricula 2001: Computer Science.
http://www.sigcse.org/cc2001 (Visited Oct 6, 2007),
December 2001.

[17] Brian Hanks, Charlie McDowell, David Draper, and
Milovan Krnjajic. Program quality with pair
programming in cs1. In ITiCSE ’04: Proceedings of

the 9th annual SIGCSE conference on Innovation and

technology in computer science education, pages
176–180, New York, NY, USA, 2004. ACM Press.

[18] Linda L. Werner, Brian Hanks, and Charlie McDowell.
Pair-programming helps female computer science
students. J. Educ. Resour. Comput., 4(1):4, 2004.

[19] Beth Simon and Brian Hanks. First year students’
impressions of pair programming in cs1. In ICER ’07:

Proceedings of the third international workshop on

Computing education research, pages 73–86, New
York, NY, USA, 2007. ACM Press.

