
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Software Development for Manufacturing

Systems- Language and Networking

Issues

Shabi Farooq
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/46

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-013

Software Development for Manufacturing Systems- Language
And Networking Issues

Shabi Farooq

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Software Development for

Manufacturing Systems -
Language and Networking Issues

Shabi Farooq
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-013 1 0192

Software Development for Manufacturing Systems - Language and

Networking Issues

by Shabi Farooq

Department of Systems Analysis

Miami University

Oxfc~d, Ohio

Submitted in Partial Fulfillment of the Requirements of the Masters

Degree in Systems Analysis

October 15, 1992

... 1.Introduction
. l.l . Description of the Problem and Motivation for the Project

.. 1.2.0utline of the Paper

2.0bject.Oriented Methodology and Manufacturing Systems
2.1.Application of the 0-0 Approach to Design of Software for

. Manufacturing Systems

3.Design and Development Cell Programming Language (CPL) and Associated Tools
.................. 3.1.A Formal Description of Cell Programming Language

. 3.1.1.Port Declarations
. 3.1.2.Device Declarations

. 3.1.3.Cell Declarations
. 3.1.4.Procedure statements

3.2.Construction of the Interpreter for Executing CPL .
. 3.2.1.Functional Description of the CPL Interpreter
. 3.2.2.Design and Implementation of the Interpreter

$.Network based Tools for Management and Control of Manufacturing Cells
. 4.1.A Brief 1ntrc)duction to Manufacturing Networks

4.2.A Structured Approach for Designing Manufacturing Networks
. 4.3.A Prototype Network for CIM Lab at Miami University

. 4.4.Netwctrk Applications

............................. 5. Summary and Future Directions

Abstract

We have witnessed unprecedented chcrnges in the industricrl world with the ndvent of computers

crnd the field of mrrnufircturing is no exception. With the boom of microcomputers, their usrige

in mcinufrrcturingsystems wcrs rerriized crf evety ievel - k o m the shopfloor level to the rrdminis-

trrrtive ernd mtinagement iayers. This paper detris with the sofrware development issues thrit

rr sofiwr~re engineer has to take into account when rrnalyzing, designing, mnd impiemerrting

sofrwcrre for mrmufncturir7g systems. Two importcint criteria thrrt one hns to consi~ler crre the

recil-time requirements and the device independent mbstmctions th~rt such sofhy(ire hrrs to pro-

vide to the end-user; since it is regsonable to expect nn end-user to know very little rrbout the

software ii~tricrzcies. Two specific rrspects of manuficturing sofrwrire elre discussed in ~letrrii

here. The first prrr? discusses a lctnguage with trn object oriented flrivor for progr~rmming mrrn-

ujkcturing systems. In particular; some of the design rrspects rind implementrition issues lire

discusse~l. The otherpart describes the networking issues that crre specific to the mcrnuftrcturing

environment. A prototype mcrnufrcturing system develope~l as ri par? of the project is usell rrs

N model to exykrin the vnrious concepts rrnd issues. A detailed descriyfion of the Mew irir7guc/ge,

Cell Programming Language (CPL), developetl for the prototjpe is ciiso include~l.

Manufacturing, which dates backs to the Stone Age, has evolved from an ad hoc and imprecise

technique to a very sophisticated and mathematically sound engineering discipline. The reasons for this

are twofold : 1. increasing need to produce goods which are of high quality, 2. need to optimize cost, effort,

and time. These criteria point unanimously in one direction - Automation. ln addition to eliminating the

human component from repetitive task execution, automation also ensures reperrtrrbiiity which is very cru-

cial to promoting quality and maintaining it in a consistent manner. It also helps in enforcing high stan-

dards of quality by rigorous specification of the requirements which can then be built into automated

tools. In the past two decades or so, the approaches to automation itself have undergone tremendous

changes. Simple automated manufacturing systems like copy kcithes gave way to machines with hard-wired

logic circuits, which took input in form of simple instructions and executed them faithfully and consistent-

ly. These machines which came into being in the early and mid-7O's, used to employ a yrogrrrmn7rrble

controNe~ and are commonly referred to as numerically controlled machines for their ability to read in com-

mands in the form of numbers and other symbolic representations. The significant feature, which was

clearly a drawback, was the fact that most of the logic and control had to be hnrd-wired into the controller

unit, thus leaving very little room for flexibility in control and management of the machines. This realiza-

tion resulted in a totally new approach, involving computer-based control, commonly known as Computer-

ized Numericcrl Control (CNC) of manufacturing systems. Even though computers were in use prior to this

period, their prohibitive costs made it almost impossible to incorporate them into the manufacturing envi-

ronment. It was the boom of mini and micro computers which triggered this revolution and made it possi-

ble to overcome the drawbacks associated with numerically controlled (NC) systems. The advantages real-

ized by such an approach are [I]:

1. An increase in flexibility,

2. A reduction in the complexity of the hardware circuits, as well as the availability

of automatic diagnostics programs, brings a subsequent need for fewer mainte-

nance personnel,

3. A reduction in inaccuracies in manufacturing due to a reduced use of the tape

reader,

4. An improvement in the possibilities for correcting errors in part programs - the

editing feature,

5. The possibility of using the computer's peripheral equipment for debugging the

edited part program; e.g., a plotter can be utilized for drawing the shape of the part.

The other significant aspect of the usage of computer-based control was the ability to establish

reliable communication channels between various manufacturing entities through computers which could

be networked together. In fact, this approach could be extended to include the design and management

components of manufacturing systems to create integrated design and manufacturing environments also

known as Computer Aided Design ~ n d Mmufircturing Systems (CAD/CAM).

With this overview about the manufacturing world today, it is now time to look at the implications

of such a revolution on the software, hardware, and networking requirements from the point of view of

software engineering and computer science, which is the domain that our work lies in. The forenlost real-

ization is the stringent requirement on the timely execution of commands and instructions which clearly

forces the software and the hardware into the real time domcrin. A specific instance of such a software

design which highlights real time factors is the development of a software based robot controller [2] . In

addition, the life cycle for such software is more task oriented as opposed to being data oriented [3].

In the network sub-component, time constraints become extremely crucial when process control

has to be performed remotely, i.e., from a computer that is not directly wired into the manufacturing cell.

This not only puts a demand on the software development at the application level, but also poses strict

real time requirements at the low-level software managing the network.

Another feature inherent to the manufacturing environment is the lack of a common programming

syntax for programmable manufacturing standards. Lack of such standards makes programming such

devices in their native programming syntax very cumbersome and annoying. In addition, the primitive

nature of instructions, which comprise a set of primitive opcodes and operands, does very little to alleviate

the burden of programming.

The aforementioned aspects form the central core of the project which are discussed in detail in

the following sections.

1.l.Description of the Problem and Motivation for the Project

The Computer Integrated Manufacturing Lab at Miami University, which is used for teaching

undergraduate lab courses in the Manufacturing Engineering curriculum, lacked an environment that

could group the various disparate units like the machining centers, conveyors, robots, and material storage

and retrieval systems into independent programmable flexible manufacturing cells. In other words, there

was no common software development platform on which students could easily program these various

machines in a high level language, thus making it unnecessary to know the specific commands for each

of the machines. Further, the existing engineering design software had to be incorporated into this plat-

form so that a prototype Computer Infegmted Mcrr~uji~cturing (and design) environment (CIM) could be

developed. This was the practical motivation. The theoretical motivation was to test the object-oriented

paradigm to develop software for a such a system and to test the suitability of the same to real-time appli-

cation development in general. We also believed that this approach could easily accommodate changes

in the system when new components were added or existing specification of the machines were changed

[dl.

With this in mind, we set out to define the problem domain for which we could develop a solution,

which in turn, could be extrapolated to accommodate further changes and enhancements in the problem

domai11. The domain thus comprised the following physical entities:

6. A CNC machining center with a pneumatically controlled chuck,

7. A spatial robot with three degrees of freedom which accepted commands from a

programmable linear controller,

8. A conveyor system,

9. Various electro-pneumatic actuators and feedback devices like the photo sensitive

and limit switches,

10. A set of stand alone personal computers,

11. Some graphics and engineering design software running on the PCs mentioned

above, and

12. A RISC machine which could act as a server for a Local Area Network (LAN).

1.2.0utline of the Paper

This project was pursued by two graduate students working along with three faculty members.

Two distinct phases were recognized for the given task. The first one dealt with the language semantics

and design issues and the second one dealt with networking issues. Other aspects that were recognized

along the way are discussed in detail in the section on future directions.

Section two discusses the salient features of the 0-0 paradigm and in particular its suitability to

manufacturing systems software design as well as its drawbacks. Issues like device independent software

and maintenance are also discussed. The remainder of the section deals with the real-time issues pertain-

ing to the manufacturing environment which in turn expose the limitations of this approach.

In the third section, description and implementation aspects of the CPL and the associate transla-

tion tools are discussed. The development of these tools was also done in an object-oriented manner. Im-

plementation of real-time constraints, though modest in number, are also explained. Limitations of the

system in the real-time domain are also be outlined in the section dealing with summary and conclusions.

The fourth section discusses the network design including LAN topology and the protocols

adopted for communication between the computers. The network-based tools developed for remote mon-

itoring, as well as data communication functions of the network are discussed in detail.

This paper concludes with a summary of our experiences and an outline of the limitations of the

present configuration. Following this, future directions are discussed as an aid to other students who may

be interested in pursuing this project further.

2.0 bject-Oriented Methodology and Manufacturing Systems

The important requirements in designing software fo computer-controlled manufacturing sys-

tems are :

13. To provide a common platform across various manufacturing peripherals and

14. To hide the physical details of these peripherals from the end user as far as possible

and at the same time, make the software independent of the actual peripherals that

it represents or operates.

It is interesting to look at the second requirement in detail. To remove the physical details of the

device from the user's view means that the language should specify generic actions. Consider an example:

stcrrf Idhe. This command does not specify how to start the lathe, but just specifies an action to be per-

formed on the lathe. It does not specify whether a solenoid switch has to be tripped or a hydraulic switch

has to be turned on. Thus, by providing such an instruction, we have created an ribsfr-ricfion of the act of

switching on a device. The latter part of the requirement seems to contradict the first one in that, once

we provide a implementation-independent abstraction to the end-user, should we not handle the imple-

mentation-specifics within the software. This apparent problem can be very easily circumvented by mov-

ing those details into the hardware of the computer that controls the switches and actuators of the various

manufacturing paraphernalia. To decide what the hardware should handle and what the software should

is a non-trivial issue in the design of real-time system development (51.

The need for a common platform and device-independent software calls for an approach which

can map entities into the problem domain to the software while hiding the actual representational details

of the same. Also, we desire to have a platform that can span different components of manufacturing thus

providing a truly integrated environment [9]. Assuming that this can be done, the next choice is to decide

which of the three approaches - process-driven, data-driven, object-oriented, or a mix of the two. Pro-

cess-driven approach, although sufficient, does not do a good job of providing a good abstraction of the

system on the software level to the user. Data-driven approach is not suitable at all since data do not form

the core of the system. Real-time command execution and data-acquisition form the central theme of

these systems. The 0-0 paradigm fits into this situation very well for three main reasons:

1. It provides a very nice abstraction (by virtue of class concept and data encapsula-

tion) of the manufacturing peripheral it represents by incorporating the d(rf(r (that

the peripheral would manipulate) and nctions (that it can perform for the external

user) into a clnss,

2. Additions or modifications made to the existing set up can be very easily incorpo-

rated into the software with practically no change to user-level abstraction, as long

as the access interface remains unchanged, and

3. A homogeneous interface can be built to encompass all the sub-components of

manufacturing with such an approach.

These reasons are discussed in more detail in the next section. Justification for this approach is

also discussed in [9].

2.1.Application of the 0-0 Approach to Design of Software for Manufacturing Systems

It is important to ask ourselves whether all manufacturing is object-oriented. This question is well

addressed by the table below [6].

Manufacturing Objectives

Production of concrete. well defined, repeat-
able, interchangeable parts and products.

Manufacturing by process and assembly
plans

Object-Oriented Premises

Focuses all objects and their attributes, ap-
plying classification structures, encapsula-

tion, and uniform representation.

Applies assembly structures and high-level
abstraction

Table 2.1.1: The affinity between manufacturing and object-orientation

Based on methods to define process opera-
tions and manufacturing services.

Complex product, process and facility are
designed by their elements.

Combines information and material process-
ing to create end-products.

- -
Depends on systematic and consistent plans.

Group technology/commonalty for productiv-
ity gains.

Communication and integration among mul-
tiple enterprise functions.

Culture of clear, ordered, and stable pro-
cesses and procedures.

Performance: Maximum profit; minimum
cost; rapid adaptation to change: quality.

It should be noted here that the above table draws parallels of which only a few are relevant to

this project. Nevertheless, this table does imply that 0-0 paradigm can be successfully used to develop

an integrated manufacturing software environment that effectively encompasses the various components

of a manufacturing system. This is pictorially depicted in the figure below[6].

Methods define operations and services by
objects.

Specifications of complex systems by their
elementary object components.

The 0-0 model combines the data and pro-
cess model

Consistent, systematic representation of real-
ity.

Delegation and inheritance by explicit repre-
sentation of commonalty.

Communication by messages, polymorphism,
and corresponding operations.

Model stability, clarity, and flexibility by
minimal dependency between objects.

Allows changes with minimum rewrite of
code, minimum errors, improved manage-

ment of complexity, and increased program-
mer productivity.

Manufacturing software
OOP, OOA, OOD

Models for Manufacturing Planning
Object-Orientation and Design: OOA, OOD, OODB

hlodels for Manufacturing Control

0 0 A : Ob.ject-Oriented Analysis O W : Object-Oriented Control
<)OD: Object-Oriented Design OODB: Object-Oriented Data Base
OOP: Objert-Oriented Programming UOMIP: Object-Oriented Modelling and Probiem-Solving

Figure 2.1.1: Scope of object-oriented manufacturing

7

These illustrations strongly indicate that manufacturing can be very closely modelled using the

0-0 approach. Additional material on this topic can be found in [7], [8], and [9]. The advantages of such

an approach are summarized below [6]:

1. The entities in the abstract domain (i.e, class objects) have a natural one-to-one

corresspondence with the entities in the physical world,

2. Modularity is inherent to this approach which has a very significant implication.

With very little programming effort, the control software can be easily adapted to

different environments,

3. Software development task itself can be simplified by dividing the effort among

team members. Specific tasks need to be allocated by just specifying the abstract

objects, leaving the implementation details to the particular member developing

the software.

Unfortunately, this approach does not come without drawbacks. Recalling the real time con-

straints that have been outlined in the previous sections, some of the features of the o-o paradigm that

make it very powerful turn out to be serious bottlenecks during implementation of 0-0 based software

for manufacturing systems [lo]. In the aforementioned reference, the author gives a detailed explanation

about the drawbacks of such an approach. Since manufacturing systems are inherently distributed, re-

mote object invocation feature is necessary which the present implementations of the paradigm do not

support 161. These features need to be built into the system using networking toolkits which in turn adds

more time overhead to the over all real-time response. Nevertheless, it is important to note that the over-

head of distributed support results in additional overhead due to message passing, which can deteriorate

the performance further.

Another issue that is of importance in such an environment is the need for shuretl memoiy. In the

manufacturing environment, it is common for two software processes to co~nmunicate with each other

via a common memory area in the computer. In order to ensure consistency of information in such

memory locations, it is important that at most one process access it at anytime. To achieve this the lan-

guage needs to provide features like semnphores and at this point no implementation of the o-o paradigm

supports such a construct.

The other disadvantage that directly stems from the "power" of 0-0 paradigm is the overhead

associated with polymor,him and tlj~nnmic binding. These features require the run-time environment o

determine the specific method that needs to be invoked rather than determining it at compile time. This

results in very high run-time costs that can seriously impede the real-time constraints. This is of crucial

importance to hcrrd real time systems since it can produce incorrect results in such systems. Soj? renl time

are less susceptible to such phenomena but, nevertheless, output could still be degraded [S]. Lan-

guages supporting those features also lack built-in support for process synchronization [6].

The drawbacks that we mentioned earlier can be overcome in part by having efficient hardware.

In fact, we all hope that the emerging technology and future capabilities will solve this problem or at least

provide a way to compensate for it.

3.Design and Development Cell Programming Language (CPL) and Associated Tools

It may be recalled from the requirements of a language for manufacturing environment that it has

to provide a good abstraction of the physical devices and their activities that it represents and also be

device independent. The language presented here, despite being independent of the specific details of' the

physical entities that it represents, is to a certain degree dependent on the hardware that provides the

interface to the manufacturing devices. This still maintains the device independence since the exact details

of manipulating the different peripherals is within the hardware and external electro-mechanical interfac-

ing equipment.

On the other hand, the user now has to configure the hardware interfaces through software by

using specific configuration commands that the language provides. These will be explained in more detail

in the next section. It is important know that this dependency is inherent and hence unavoidable. One

possibility to hide these details would be to hardcode these details into the translation tools for CPL, but

this would introduce a certain amount of inflexibility and in turn make the language device dependent.

So it has to be remembered that we are maintaining a delicate balance between device independent ab-

straction at the user level and the device-independent nature of the language itself.

1. Hard real time systems are those that have very stringent response requirements. Soft real time systems,
on the other hand, can handle some amount of delay.

3.1.A Formal Description of Cell Programming Language

The formal specification of the grammar of CPL is included in appendix A. A CPL program con-

sists of four major sections:

1. Port Declarations: Used to identify hardware interface ports.

2. Devices Declarations: To identify different manufacturing peripherals within a cell, and to assign

ports and associate bits with these devices

3. Cell Declarations: Used to declare the network address of the cell controlling computers.

4. Procedure statements: Commands to execute manufacturing, monitoring, and feedback

instructions.

3.1.1.Port Declarations

The port declaration section is used to assign a physical port address on the PC. The declarations

are made within a Porfs End block. Following the key word Porfs is a series of individual port declara-

tions. Its syntax is as shown below:

The Porl-Identifier can be any alpha-numeric character string to identify a port with a user-de-

fined name. Underscores may be used for forming descriptive identifiers. The par?-trdclress should be a

valid hardware address that corresponds to an actual physical port in the computer hardware. It is this

port that actually provides the interface to the physical domain, i.e., various manufacturing components.

The direction indicates whether the port is used to input information or output information. Output drives

some physical devices and input gets feedback or status information that is used to decide the course of

future action. The default mode is input.

If the other specification is used, it implies the identification of a sericrl cornrnunictrfion port that

is usually used to downloading information to the external devices, i.e., sending commands to a lathe in

its primitive instruction format or download a file consisting of similar instructions. It should be noted

that these commands can be separately generated by other CADICAM software and then stored in files

which can be accessed by the CPL programs written by the end-user. Thus the end-user can use these

files without having to deal with the low-level instructions directly and thus maintaining the abstraction

outlined in the earlier sections. Another type of port that is used in this set-up is the pvinferpc>rt which

can be implicitly addressed by the individual instructions. The reason for the lack of formal specification

of such a port is simply because there is no formal setting of parameters to be performed when dealing

with them. An sample piece of code to illustrate the use of these instructions is given below.

Ports

PortA 64259 Output;

PortB 64256 Input;

PortC 64257;

CommPortl 3600 7 1 1 ;

End

3.1.2.Device Declarations

In this section, each device in the cell is associated with a bit on a port. These devices have to be

one of the device-fype types which are defined as a part of the data type subset of the language. These

predefined types correspond to physical entities in the cell. Any new entities can be easily incorporated

into the language by virtue of the modular structure that the 0-0 approach supports. The syntax for such

a declaration is as follows:

The declaration block is bound by the key words Devices and End. The < device-vcrricible > is a

user-defined alphanumeric string with possible underscores separating the individual characters in the

strings. The < device-fjpe > is one of the pre-defined key words which corressponds to a actual physical

device. The < yorl-vani~ble > is a label associated with a physical port that is assumed to have been de-

clared previously in the port declaration section. The < bit-number> field is a numeric value between

0 and 7 which corressponds to a physical bit on the communication port. It is this bit that controls the

manufacturing device, partly or wholly. In cases where this bit is associated with input, its state represents

the state of the device associated with it. The example below illustrates the syntax of this declaration.

Devices

PalletLiftUp pulse PortC 4

Conveyor Coil PortC 5

Robot Programmable LPTl

End

The table below lists the device types and their associated functions.

Table 3.1.2.1: Device functions

Device Type

Coil

Sensor

Pulse

Programmable

Wait

It is worthwhile to note that the programmable device type represents the class of manufacturing

devices that can be programmed by a set of primitive instructions that are unique to the particular device

class. It is in fact this type which hides this detail away from the user.

Valid Functions

On, Off

Waiton, Wai toff

Strobe

Send, Do

milliseconds

3.1.3.Cell Declarations

This subset of declarations associates each manufacturing cell with a computer which controls

the functioning of that particular cell. This is done to facilitate inter-cell communication through the un-

derlying computer network. The syntax is shown below.

Here < cell-vnrirrble > associates a manufacturing cell with a character string. The terminal

< computer-id > is a network address that uniquely identifies a computer on the network. Addresses

can be either Internet addresses or names that uniquely map to an Internet address. Two exampIes below

explain the syntax. These declarations are contained within the Cells ... End block. The experimental CIM

configuration that we have developed as a part of this project has one cell at present. However, additional

cells can be easily added to this.

Cells

Cell1 Cell1 -Camp

Storagecell 134.53.32.240

End

3.1.4.Procedure statements

A CPL file comprises the following units:

1. Procedures: Contains the instruction sequence to control and operate cell.

2. Program: Collection of procedures.

The syntax for procedure statements is shown below:

<device-variable> . (<device-function> [(parameter {. . .)) I) I <delay-time>

< device-variable > is an identifier previously declared in the device declaration section. The

< device - function > is a key word defined in the language. The function(s) associated with each device

are listed in table 3.1.2.1. All statements are within a Procedure ... End block. The following is an example

of the syntax for procedure statements.

Procedure

Conveyor .On;

Robot.Send ("NT") ;

Lathe.Do (Machinepart) ;

Delay. 500

End:

Here again we notice the implementation-independent syntax (and semantics)of the instructions.

The final "container" for all the language entities described earlier is the yrogrc~rn construct. This is essen-

tially a collection of statements that invoke procedures which are assumed to have been declared before.

This approach enforces a modular structure to the programs, thus enhancing readability and promoting

ease of development and maintenance. As before, all program statements are enclosed by P~.ogrcrrn ... End

block. The syntax of a program statement is as follows:

One important observation about this syntax is the presence of an optional clause that, in effect,

permits repetition. This can be explicitly specified by number of iterations or a condition so that repetition

occurs as long as the boolean value of the expression remains unchanged. This condition is a special one

in that it refers to a signal from a cell controlling computer. The idea behind this can be explained by a

simple example. Consider a series of cells along a manufacturing line for cars. Let us assume that two

adjacent cells machine the engine block. Further, let us assume that the first cell performs a milling opera-

tion on the engine block and the subsequent one does a finishing operation on the blocks. Now, we would

like the second cell to perform its operations as long as there are parts arriving from its successor cell.

Another way of stating this is to say that this cell repeats its functions as long as the previous cell is up

and running. It is interesting to note that this approach blends well with the declarative style of program-

ming in which we specify what we want as opposed to how to do it. In other words, this is is yet another

instance of the abstraction that we have been constantly emphasizing [Ill, 1121. At this point this feature

is a part of the language definition, but the present version of its implementation does not support it. A

final example illustrates this syntax of the program statement.

Program

MachinePart.EngineBlockCell; *This is a comment!

StoreParts . StorageCell (Manufacturingcell. Signalon) ;

StoreParts. Retrieveparts (50) ;

End

The above example illustrates the way in which comments are inserted. In CPL, every statement

except block marker sends with a semicolon. An example of a CPL program is included in the appendix

B. A copy of the user mtznunl can be found in appendix C.

3.2.Construction of the Interpreter for Executing CPL

The development of tools to translate and execute CPL instructions was done in two phases. In

the first phase, all the CPL code is compiled to produce an intermediate representation, which we called

I-code repmenfnfion. This representation resembles any standard assembler syntax. The reader is urged

to refer to appendix D for a sample of this representation. In the second phase, the I-code file is inter-

preted and commands are generated for the hardware interface which controlled the manufacturing cell.

The reason for this two-tiered approach can now be seen in the light of CNC approach which was dis-

cussed in the introduction. It is the interpreter which provides the control of the cell (and hence the periph-

erals that make up the cell), to the computer controlling it. Thus have we moved the control from the device

controllers up into the software layers. This enhances the flexible nature of the manufacturing system in

that it lets us control the functioning during the actual execution of the instruction. The development of

the tools for the first phase of the translation, i.e., the compiler and the cross-reference listing generator

was taken up by another graduate student [13]. The figure below summarizes these two stages of language

translation process.

r] I-CODE c>
1 \ I

CPL CODE COMMANDS VIA COMMUNICATION
PORTS

Table 3.2.1: Two stage CPL language translation process

3.2.1.Functional Description of the CPL Interpreter

The interpreter serves the following services:

1. It enforces control of the manufacturing cell in the controlling computer by executing one instruction

at a time.

2. It optionally allows user interaction and thus passes the control to the user level. This is done by provid-

ing execution under step (-s) mode. This mode outputs the CPL command and waits for the user prompt

before executing the corresponding set of low-level instructions. In other words, the interpreter "steps"

through instructions one at a time in an asynchronous fashion. This option also allows provides runtime

debugging facilities.

3. An option to truce (-f) is also provided to enable the user to associate each CPL instructions with the

actual physical action that the instruction represents. This is provided to make the environment more

user-friendly.

With these specification of functional requirements, the next step was to design the structure of

the interpreter. It was decided to separate the interpreter from the compiler component from a pure soft-

ware engineering perspective. This would result in decoupling and thus code inter-dependencies would

be totally eliminated. It was again decided that the 0-0 approach would be suitable for reasons already

discussed in the previous sections of the paper. The design aspects are explained in the next section.

3.2.2.Design and Implementation of the Interpreter

The first step in the design process was to identify the tasks that the interpreter had to carry out.

It should be recalled that the interpreter had to execute intermediate code, called y-code, that is output

by the compiler which takes CPL source as input. With this in mind, five action primitives were recognized

which are listed below:

(SetBit) Set or reset a bit On the 110 port.

(Querywait) Wait for the system to enter a particular state.

(Wait) Wait unconditionally for a specified amount of time.

(Sendstring) Send a text string over an interface.

(Strobe) Send a strobed signal via the I10 port.

In addition, actions pertaining to setting up of the ports and debugging features were recognized.

The actions listed above will be explained in detail now.

Every manufacturing device is associated with one or more bits on the 110 port, the number of

bits being directly related to the number of abstract devices that a physical manufacturing device handles.

For example, a CNC lathe would be considered equivalent to three logical devices, the first one to switch

it on or oft; the second one to toggle it into a mode to accept instructions via the serial interface, and the

third one to control the opening and closing of the chuck (This is not entirely true since the chuck can

be considered as an independent device and thus be decoupled from the lathe, which is yet another man-

ifestation of the 0-0 paradigm that we have employed!).

Often. it is necessary to wait for the system to enter a particular state before the next action can

be taken. Consider another situation which employs the second action primitive to achieve this goal. Be-

fore the chuck can release the part that has just been machined by the lathe, it is very important that the

robot grasps the part first, otherwise we will have the robot in a fairly embarrassing situation of not know-

ing how to get hold of the part! Therefore, the face saving measure here would be to wait until the robot

has grasped the part with its gripper before the chuck can be asked to release the part. So by employing

the QueiyWtrif action primitive, it is possible to make the chuck wait till the robot grasps the part following

which it can safely release the part. This is illustrated by a generalized state diagram shown below.

Not(Robot grasp part)

Release chuck

Figure 3.2.2.1: State transition diagram for Querywait action primitive

The third action primitive, miif, is similar to the previous one but does not require the constraint

of having to wait for the system to get into a particular state. This unconditional wait primitive allows

the user to decide on the wait time between actions. Typically, this is useful when sending a sequence of

port initializations with a fixed time interval between individual initialization. This is often necessary when

a user wants to be sure that the system has reached a given state before taking the intended action.

The Sendsfring primitive primarily addresses the issue of sending text strings to programmable

devices such as robot and lathe over an appropriate interface. These strings are commands that the de-

vices understand and execute. In fact, one of the aims of CPL was to hide this relatively primitive set of

commands from the end-user as far as possible. This primitive achieves this as follows: Files containing

these commands are generated once for a particular setup of the cell and stored away in a database resid-

ing on the network server. (Details about the network are explained in section 4). By using the Sen~lSfring

primitive, the user can request the downloading of these programs to specific programmable devices.

The last primitive action, Sfrobe, is identical to SefBif except that this action sends a s t ep input

(a high followed by a low on the electrical interface)to the I/O port. This action is to accommodate certain

manufacturing devices that require a strobed input for activation or deactivation.

With this identification of tasks that the interpreter, the next step was to identify the data elements

that would be necessary. In formal 0-0 terms, this meant the identification of the nouns as objects, the

verbs being the verbs that have just been discussed. The inheritance structure is illustrated in appendix

E. The code implementing the interpreter is included in appendix F.

4.Network based Tools for Management and Control of Manufacturing Cells

4.1.A Brief Introduction to Manufacturing Networks

The role of a computer based network is very critical to the functioning of a CIM setup. It is the

network which provides means of communication between various entities, as well as integrate the design,

manufacturing and management components successfully. So a reliable and a timely network is very es-

sential in the CIM world. A hierarchical model for a network can be thought of comprising the following

levels:

1. Factory level network.

2. Shop level network.

3. Cell level network.

4. Machine level network.

5. Sensor level network.

It is interesting to note the close correspondence of this hierarchy with the structured layers that

CPL provides. The performance variables for each of these layers can vary depending on the requirements

of the network at each level. The same is true abut the topology of the network at each of these levels.

The table below summarizes this information.

Table 4.1: Hierarchical network structure and performance variables for Manufacturing

As can be seen, the performance is measured by response time as we move down the hierarchy.

This is consistent with the fact that the lower levels of the network hierarchy are working at the machine

level, and hence the real-time performance of such networks would be of critical importance.

Overall
functionality

High/Medium

High

High

Medium

Low

Performance
variables

Throughput

Throughput

Response time,
Throughput

Response time

Response time

Medium access
control

Point to point

Token passing,
Ethernet

Token passing,
Ethernet

Token passing

Polling,
Token passing

Network level

Factory

Shop

Cell

Machine

Sensor

Topology

Partial
interconnections

Bus, Ring, Loop,
Star

Bus. Ring, Loop,
Star

Bus

Bus

4.2.A Structured Approach for Designing Manufacturing Networks

There are a number steps involved in the design of a manufacturing network. The following are

significant:

1. Selection of network architecture.

2. Design of a specific network topology.

3. Choosing specific implementations.

4. Development of a set of application requirements.

5. Translation of application requirements into a set of network requirements.

6. Design of application software.

7. Evaluation of the overall design.

The selection of an architecture depends largely on the functionality. Stringent real time require-

ments would imply a fast and a reliable network which is characteristic of lower two layers of the hierarchy

listed before. As can be seen, Ethernet is not preferred in the lower levels, since its performance seems

to degrade with increasing traffic [14]. Token bus architecture is preferred in these layers.

Topology is largely governed by the possibility of further expansion of the existing network. When-

ever possibilities of expansion exist, a star topology is preferred since it is very easy to add additional nodes

on such a setup. Referring to table 4.1, we see that star configuration is a topological option in the top

three layers whereas it is absent in the lower ones. This is due to the fact that at the machine and the sensor

levels, there is very little possibility of additions being made to the network.

Since there are many protocol and network implementations, network application designers must

choose specific implementations so that they match the selected architecture, provide adequate perform-

ance, and easily interface with other devices used in the application. Factors affecting implementation

include operating systems. programming languages. etc.

Definition of application requirements is a statement of what the manufacturing systems needs

to deliver. This is done to extract the implications of such requirements on the performance of the network

component of the manufacturing system.

Once the application requirements are clearly defined, the next stage would be to make some deci-

sions about the network requirements. The important factors that come into play here are response time,

information throughput, medium type for all networks and subnetworks, tolerance of failures, software

interface, etc.

Once the network requirements of the network are defined, the next step would be to design appli-

cation software to run on such a network. These applications typicaliy perform end user functions. A typi-

cal example in this category would be a set of software programs that remotely monitor the status of a

cell. Another example could be software that manages a centralized database on the network.

Evaluation of the network is necessary to verify and validate the design. Typically, this can be per-

formed using analytical models, simulation or measured data.

4.3.A Prototype Network for CIM Lab at Miami University

The network that was designed and installed at Miami university spanned the factory. and shop

levels of the network hierarchy. As a result, a combination of bus and star topology was chosen. Since

the traffic on the network was expected be low, an Ethernet was chosen. This also rendered the network

compatible with the existing networks in the building as well as the networking software that is currently

being used. The configuration of the network is shown in appendix G. A star topology using twisted pair

cables was chosen at the cell shop level to accommodate for additional cells in the future and also allow

the relocation of cells. A bus topology was employed to connect the computers that were identified to be

used in the design and the analysis components of the CIM model.

4.4.Network Applications

The network applications that were developed were to add remote monitoring capabilities to the

network so that an user could monitor the status of a cell from any computer that was on the network.

The Remote Procedural Call toolkit was utilized for this purpose which provided some ready to use pro-

gram shells that could be customized for specific applications.

The client server approach was taken to develop this application. It was decided that the client

would run on the computer that also controlled the cell, along with the interpreter which drove the cell.

This posed a problem since the operating system that runs on these computers does not have the capability

to support multitasking. This shortcoming was overcome by using Termintrte lrnd Sttry Resicienf (TSH) tech-

nique. This approach essentially hooks an application program to one of the system interrupts (like key-

board or timer interrupt) and activates the application whenever an interrupt is generated. It is up to the

application to take some action or pass the control over to the default interrupt handler. Thus, using this

approach, the client program that monitors the status of the cell runs in the background and the interpret-

er runs in the foreground. The client monitors the status by observing any changes on the I10 port to which

all the manufacturing peripherals are hooked. On the server side. a program that polls the network for

updated information about the cell, is kept running. If any updated information is received, the display

screen is updated to reflect these changes.

One interesting real time constraint emerged during the development of this application. T h e cli-

ent that monitors the cell can be set to poll the system at fixed time intervals. If these time intervals are

spaced too far apart, then it is possible to lose transitions that occur in the system between the two check

points. For example, it is possible that the photo sensor detects a pallet, sets a bit on the I10 port, then

resets it after the pallet passes, before the monitoring program checks the status again. This loss of infor-

mation can result in inaccurate status information. On the other hand, polling the I10 port too often would

degrade the performance of the interpreter and could the affect the performance of the cell. Thus, a t rade

off had to be made by trial and error to decide on an acceptable time interval between successive pollings.

The code that implements the monitoring system is included in the appendix.

5.Summary and Future Directions

This project attempted to analyze the various software and computer requirements for a computer

integrated manufacturing environment. The development of CPL addressed the language issues and the

present version of it has been successfully tested for correctness. Due to time and resource constraints,

some issues could not be considered in this project. Firstly, a truly multitasking operating system with

some real time capabilities is needed for a CIM environment. Presently, the operating system, DOS, sup-

ports single tasking only with practically no real time capabilities and this is a serious bottleneck in the

system. CPL needs to be enhanced to support shared menlory capability, thus allowing multiple processes

to access a common memory area (which is necessary when two distinct processes coordinating with each

other). Shared memory places additional burden on the application languages and the operating system.

since now one has to make sure that memory updates by one process are not overwritten by the other

processes. This needs memory lock mechanism like semaphores. As the number of cells on the shop floor

increase, it is necessary to build in concurrency into the software system to allow for the network hierarchy

to be extended to the factory layer. This would enable a central computer to coordinate various cells oper-

ating in parallel. Another feature that is needed is priority scheduling of processes, and this needs t o be

passed on to the application layers since the user has control over assigning priorities to different pro-

cesses.

Attempts have been made to preserve the declarative style of CPL as far as possible. At this point,

the language does not support constructs like if-then-else, repecrt-until, while-do, etc. Although these con-

structs make a language more powerful, it should be noted that a certain amount of procedural flavor

is introduced into the language. On further consideration, it seems that this is necessary to deal with real

time constraints of the system. Another possibility can be recursion to provide declarative form of looping,

but this generally degrades the performance at runtime. So it can be concluded that these constructs have

to be incorporated at the cost of losing some of the declarative flavor of the language.

Another important issue that needs to be considered is the extension of the language to offer net-

work support. This is necessary if the language needs to support multiple cell management in a network

transparent way. This would make it unnecessary for the user to know if two processes are resident on

the same machine or on different machines. This would offer a client-server model which can be conve-

niently used to implement such applications as remote monitoring applications. Also, this would make

it possible to establish a homogeneous language interface across the design and manufacturing compo-

nents of the CIM model since these components generally reside on different machines on the network.

The CIM model that has been developed does not yet incorporate an integrated user interface,

which is necessary to provide a common software platform that spans the various stages of an integrated

environment. This would provide a window-based, menu-driven interface to the user that could hide all

the network details from the user and provide an easy to use interface.

In conclusion, CPL provides a platform to develop simple programs by the students intending

use it. Peripherals can be added to and deleted from the cell very easily by incorporating appropriate de-

vice declarations. The interpreter is dependent on the hardware to a certain extent. but this unavoidable.

Any new action primitives can be very easily added to it since its object-oriented nature makes i t highly

modular. The remote monitoring facility is very simple at this stage, but the basic framework has been

established to facilitate further enhancements to it.

References

1. Yoran Koren, Computer Control ofManufiicturing Systems, McGraw Hill. 1983.

2. Hassan Gomma, A SoJhynre Design Method for Recrl Time Systems, Comm. of
the ACM, September 1984.

3. Hassan Gomma, Sofiare Development of Red Time Systems, Comm. of the
ACM, July 1986.

4. Brian M. Barry, Smalltalk as a Development Environment for Integrated M m -
ufcrcturing Systems, Proceedings of the International Conference on Object-0-
riented Manufacturing Systems, May 1982.

5. Ian Sommerville, Sofinre Engmeering, Addison-Wesley, 1992.

6. Nof S. Y., Is all Manufacturing Object-Oriented?, Proceedings of the Interna-
tional Conference on Object-Oriented Manufacturing Systems, May 1982

7. Fauvel, et. al., Object-Oriented Design for Mtrnufacturing, Proceedings of the
International Conference on Object-Oriented Manufacturing Systems, May
1982

8. Prabhakar S., et. al., An Evtlluation of Object-Oriented Design Methodologies
for Control trnd Mnnufncturing Environments, Proceedings of the International
Conference on Object-Oriented Manufacturing Systems, May 1982.

9. Ken Jenne, Pat Pascal, A Sofhvnre Architecture for Building Industrial Automu-
tion Systems, Proceedings of the International Conference on Object-Oriented
Manufacturing Systems, May 1982.

10. John C. Kelly, A Cornprison of Four Design Methods for Retil Time Design,
Proceedings of the Ninth International Conference on Software Engineering,
Monterey, CA, March 1987.

11. Des Watson, High-Level Llinguages and their Compilers, Addison-Wesley,
1989.

12. Ravi Sethi, Programming Lnnguages- Concepts nnd Constructs, Addison-
Wesley, 1989.

13. Mala's Report ??

14. Juan R. Pimentel, Cornmunicotion Networks for M~nufrcturing, Prentice-Hall,
1990.

15. Sun Microsystems, PC-NFS Programmers Toolkit.

Appendix A
CPL Grammar

The Cell Programming Language is designed as a context-free grammar and uses the Backus

Naur notation for expressing the syntax. The grammar is free of ambiguity at present but shall be cor-

rected for any ambiguities detected henceforth.

CPL is described as a set of production rules, each production rule consisting of a left hand

side and a right-hand side, separated by an assignment operator. An example of a production rule
is given below.

Production Rule : An example

The left-hand side is always a non-terminal symbol. The right hand side may be a combina-
tion of non-terminals and terminals, only non-terminals, or only terminal symbols. The non-terminals
are enclosed within the ' < ' and ' > ' symbols and the terminals are represented by constant values.

The '-- > ' string serves as the assignment operator. Optional symbols may be enclosed within square
brackets or braces 'I' and '1'. Parenthesis are used to specify grouping of symbols, and when more

than one symbol, separated by commas, is enclosed within '{' and '1'. it means that at least one of
the symbols or a group of symbols must be present. For example, in line 16 of the CPL grammar,
the device-data must either consist of the portpame followed by a valid-bit or just a predefined-port.

The parenthesis around port-name and valid-data indicates that these two are grouped and hence

they go together. In this grammar, the language keywords, alphabets, special ASCII characters and

digits are the terminal symbols. Currently, the language provides for sequence and repetition con-

structs, but also leaves room for adding alternative constructs. The CPL production rules are as shown

below.

CPL Production Rules

1. < cpl-program > -t PROGRAM < prog-name > < declarations >

2. .: declarations > -t [< port-declarations >] < device-declarations > < procedure-declarations >

3. < port-declarations > -t PORTS < port-stmntlist > END

4. < device-declara tions > --+ DEVICES < device-stmntList > END

5. < procedure-cleclarations > -t PROCEDURE .: procedure-stmntlist > END

6. < port-stmntlist > -t i port-stmnt > [< port-stmntlist >]

7. < port-stmntlist > -t c port-stmnt >

8. < port-stmnt :,

9. < port-name >

10. < port-address >

1 1. < device-stmnt List >

12. < device-stmntList >

13. < device-~tmnt >

14. < device-name >

15. < device-type >

16. <device-data >

17. < procedure-stmntList >

18. < procedure-stmntlist >

19. < procedure-stmnt >

20. < sequence >

21. < repetition >

22. < dev-func >

23. <function >

24. <: pulse-func >

25. < coil-func >

26. < sensor-func >

27. < programmable-func >

28. < wait-time >

29. < direction >

30. < nnnpgble-type >

31.. < predefined-port >

32. < valid-bit >

33. <iterations >

34. < identifier >

35. < ~ l r i n g >

36. <character >

37. < alphahet >

38. < special-character >

39. < double-quote >

40, < parenthesis >

41. <braces>

42. < flower-hmcket >

43. < open-p:trenthesis >

44. < close-parenthesis >

45. < open-bmce :,

46. < close-brace >

47. < open-flower-bracket >

48. < close-flower-bracket >

49. < math-operators >

50. < integer >

51. <digit>

< port-name > < port-address > < direction >;

<identifier >

< integer >

< device-stmnt > [device-stmntlist >]

< device-stmnt >

< device-name > < device-type > < device-data > :

<identifier >

PROGRAMMABLE I < nonpgble-type >

{ (< port-name > < valid-bit >) , < predefinedprt >)

< procedure-stmnt > [i procedure-stmntList >]

< procedure-stmnt >

<sequence > I < repetition > I <alternation >

< device-name > [. < dev-func >] :

D O < iterations > < procedure-stmt-list > END D O

< function >

< pulse-func > I < coil-func > I < sensor-func > I < programmable-func > I < wait-time >

. Strobe

. { On , OFF }

. { WaitOn . WaitOff }

. Send < open-parenthesis > { (< double-quote > <string > < tlouble-quote >) .
< identifier > } < close-parenthesis >

. <integer >

[INPUT] /OUTPUT

COIL1 SENSOR / PULSE1 WAIT

LPT1: I COM2:

01 ~1213141~1617

<integer >

< string >

c: character > [< character >]

<alphabet > I < special-character I <digit >

AIBICIDIEIFIGlHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZIaIhIcIcIlelflgl

h l i l j l k l l l m l n l o l ~ l q l r l s l t l u l v l w l x l ~ l z
< parenthesis > I <braces > I < flower-bracket > I < math-operator > I ' 1 " I ! I @ ' (# I $ I 'Tr I
* l ~ l * l ~ l ~ l ~ l : l ' ' l * l . l ~ l ~ l ~ l ' l ~

< open-parenthesis > I < close-parenthesis >

< open-brace > I < close-brace >

< open-flower-bracket > / < close-flower-hmcket >

(

)

[

t
{

1
+ 1-1*11

(digit > {<digit >}

0111213141516(71819

Appendix B
CPL Source Program

Ports 1" Port declarations
PortC 64259 Output;
PortA 64256 Input;

End

Devices /* Device declarations
PalletLiftUp Pulse PortC 4;
Conveyor Coil PortC 5;
PhotoCell Sensor PortA 7;
PalletArrived Sensor PortA 6;
Chuckopen Pulse PortC 1;
Robot Programmable LPT1;
Lathestart Pulse PortC 2;
Lathestop Sensor PortA 4:
PalletLifted Sensor PortA 5;
Palletstops Coil PortC 0:
ChuckClose Pulse PortC 3;
PalletLiftDownPulse PortC 6;
LatheRunning Sensor PortA 2;
LatheHandShk Sensor PortA 3;
Delay Wait;

End

Procedure 1:" Device operations
Robot.Send("NT"):
Pal1etStops.On;
Conveyor.On:
PhotoCell. WaitOn;
PalletStops.OE
Pal1etArrived.WaitOn;
Delay. 1000:
Pa1letLiftUp.Strobe;
Pallet. WaitOn;
Conveyor.Offr
ChuckOpen.Strobe;
Robot.Do(LoadPart);
Delay. 1000;
ChuckClose.Strobe:
Delay.2000;
Ro bot.Do(MoveAway);
Delay.2000;
LatheStart.Strobe;
LatheStop. Waitoff;
Robot.Do(MoveBack);
Delay.2000;
ChuckOpen.Strobe;
Delay.2000;

Robot.Do(GetPart);
PalletStops.On:
PalletLiftDown.Strobe;
Conveyor.On;
Delay.500;
Conveyor.Off;
LatheStart.Strobe;
Pa1letStops.off;

End;

Appendix C
CPL Language Reference & User

Manual

1. Introduction

The Cell Programming Language (CPL) is a high-level special purpose language being
developed at the Department of Systems Analysis at Miami University. This project is part
of a larger project to design a computer aided manufacturing system, and support course
work, projects, and research in Flexible Manufacturing.

1.1. What is CPL

CPL is a programming language environment for use in the control of manufacturing

cells. Individual cell components and their operations can be integrated by programming the

cell as a single unit. Programs to do this could be written in any other existing high-level lan-
guage such as BASIC or C, but the user would have to be familiar with the syntax necessary

to perform low-level input and output to the various hardware devices that provide the inter-
face to the cell's devices. For example, the user would set a particular bit on a particular hard-

ware port to 1 to turn on a device. Instead, CPL allows the user to program the cell by using

commands such as On and Off, and the CPL system will take care of the low-level program-
ming details.

CPL does not hide all of the hardware details. In order to use CPL. the user is still

required to know the particular hardware device and bit to which each device is interfaced.
Also, the user must know the type of device. Finally, individual cell components such as robots

and CNC machines will have to be programmed in their host languages. One advantage, how-

ever, is that the programmer has full control of the operations, and can communicate with the

individual devices even after the programs have been loaded into their memories.

1.2. The CPL Environment

The CPL environment consists of :
1. CAD/CAM workstations, a file server and peripherals;

2. A local area network;
3. Personal Computer (PC) controlled manufacturing cells;

4. Interfacing electronics between the PCs and the cell devices;

5. A programming language used to program the cells.

An overview of the environment can be found in the paper "Object-Oriented Flexible
Manufacturing System at Miami University" in Appendix A of this document. The remainder

of this document is devoted to the description of item 5 in the above list.

2. How CPL Works?

The CPL software consists of three major components:
1. CPL compiler;
2. CPL interpreter;
3. Remote status display.

The CPL compiler processes the user's CPL program along with any required robot
and/or CNC command files to produce an intermediate file of instructions known as p-code.
This p-code is the input to the interpreter which performs the low-level inputloutput opera-
tions on the cell controller PC. Thus, the compiler can be run on any PC or CAD/CAM work-
station, but the interpreter must reside on the cell controlling computer. Once a CPL project
has been compiled to p-code, it need not be recompiled unless a change is made in the CPL
code, The machine command files serve only as input so any changes made to them will not
affect the execution of the CPL program. A debugging option is provided in the interpreter
which helps to eliminate CPL program errors.

The remote status display is an optional component of the system that can be used
to remotely monitor the operation of the cell. The remote status display has a component,
called the monitor, that runs on the cell controller, and a component, called the display, that
runs on a remote PC, for example a CAD/CAM workstation. The monitor sends the state
of each device to the display which in turn outputs the status to the user.

3. A CPL Project

Earlier it was stated that CPLis a language that allows the user to control and integrate
devices of a manufacturing cell, but that the user is still required to program individual cells
in their host languages. Thus, a CPL program would consist of:

1. A CPL program, and
2. Zero or more command files for programmable devices.

In managing a project, the user should keep all of the command files and the associated
CPL language file together, ideally in a separate directory on a CAD/CAM workstation.

4. A CPL Program

A CPL program consists of five major sections: port declarations, device declarations,
cell declarations, procedure declarations, and program declarations. The following subsec-
tions elaborate on each of these.

4.1. Data Structures in CPL

A CPL program has three major types
1. Ports: Used to name hardware interface ports.

2. Devices: Used to name individual cell devices, and assign ports and bit numbers
3. Cells: Used to declare network addresses of cell controlling computer.

In CPL, all data structures are composite data types and a declaration of a variable to be of
a type also assigns values to the attributes of the type. So, a dynamic change in the value of

a variable is not possible.

4.1.1. Port Declarations

The port declaration section is used to assign a physical port address on the PC. The
declarations are made within a PORTS END block. Following the keyword PORTS is a

series of individual port declarations. The syntax of a port declaration is as follows

< port-variable > (< port-address > <direction >) I (< port-name > < baudrate > < data-bits :, c stop-bits > <parity >):

Thepo~t_vnl-inble can be any user defined identifier consisting of a maximum of 31 characters.
The identifier can consist of alphabetic characters, digits and underscores upto a maximum

of 31 characters. Theport-nddress should be a physical port address and the direction is either

INPUT or OUTPUT depending on whether the port is used to send or receive signals: the
default direction is INPUT If the port is a serial port, the perf-name should be one of the
serial ports COM1: or COM2: followed by the baudmte, number of clitfn bits, number of stop
bits, and the type of p~lrity should be specified. An example port declaration section is given

below.
Ports

PortA 64259 Output;

PortB 64256 Input;

PortC 64257;

Comlport COM1: 3600 7 1 1;

End

4.1.2. Device Declarations

The device declaration section is used to declare a device object and associate a port

and bit number with it. The device types are predefined and correspond to the devices in the
cell. We have not made provisions for including user-defined device types in the language,
because at this juncture we do not anticipate such a need. The declaration block is bounded

by the keywords DEVICES and END. The syntax for the device declaration is as follows,
< device-variable > < device-type > (c port-variable z [< hit-number > 1) 1 < programmahie-port > :

The device-vm.irrble is a user defined identifier and the device-type is a keyword in the language.
The yor-t_vcir-ilrble should have been defined earlier in the port declaration section, and the

bit - number is a constant between 0 and 7 and corresponds to a bit on the data acquisition
board. For a programmable device type, the port name LPTl is specified if a parallel port

is to be used, and the port identifier that has been assigned one of the serial ports COM1: or
COM2: is specified if a serial port is to be used. An example device declaration section is

given below.
Devices

PalletLiftup Pulse PortC 4;

Conveyor Coil PortC 5;

Robot Programmable LPT1;

Lathe Programmable Comlport;

End

4.1.3. Cell Declarations

The cell declaration section is used to assign network addresses to cell names in order

to provide for communication between cells. Declaring cell names makes it convenient to as-
sign a procedure to a cell, and facilitates modular programming at a small scale. The syntax
of a cell declaration is as follows:

c cell-variable > c network-address > ;

The cell-variable is like any other user defined identifier, and cannot exceed a maximum of 31 characters.

?'he network-address is a pre-defined host name or network address that has been assigned to the cell

controlling computer by the system administrator. An example of a cell declaration section is given be-

low.

Cells

ManufacCell cimlab6;

StorageCelI 192.34.54.3;

End

4.2. Control Constructs in CPL

A CPL program has two basic control constructs:
7. Procedures: Contains the sequence of cell control operations executed on devices

8. Program: Collection of procedures to be executed on cells

4.2.1. Procedure Declarations

The next section in the program is the procedure section which consists of statement

constructs. Each statement represents one device operation and directly corresponds to an

actual operation of the real device. The syntax of a procedure statement is as follows,
< device-variable > . (< device-function z [i open-parenthesis > parameter {}. < close-parenthesis >]) (

i: clelay-time >

The ci'evice-vctrictble is an identifier previously declared in the device declaration section. The

iievicefirnction is predefined, and is a keyword in the language. Table 4.2.1 lists device types

and valid functions for each device type. Function parameters are enclosed within parenthesis
and are separated by commas. As with devices and ports, the keywords PROCEDURE and

END mark the beginning and end of a procedure block. An example of the procedure section

is given below.

Procedure

Conveyor.On;

Robot.Send("NT"):

Lathe.Do(Cutyart);

Delay. 1000;

End

TABLE 2.1

Students can program device objects with names that directly correspond to their real-

world counterparts. The predefined device functions are named after the actual device opera-
tions. For e.g., a statement such as Conveyor.On is an instruction to switch on the conveyor
and a statement such as PhotoCel1.WaitOn is an instruction to wait for the photocell to be
switched on. This way it is possible to write a program and visualize an entire production

operation without actually performing it.

TYPES

COIL

SENSOR

PULSE

PROGRAMMABLE

DELAY

The user is, however, required to program a programmable device type using its host

language. Commands to the PROGRAMMABLE device type can be given directly by passing
them as parameters to a function or they can be stored in a separate file, and the file name
passed as the parameter. For e.g., Robot is declared to be a programmable device, a n d the

Send operation accepts a parameter which is a string and sends a command to the robot. The
Do function on the other hand accepts an identifier that is the name of a file consisting of robot

commands which are read and directly output to the robot.

VALID FUNCTIONS

ON, OFF

WAITON, WAITOFF

STROBE

SEND, DO

MILLISECONDS

4.2.2. Program Declaration

The program section is the last section in a CPL program. and is simply a series of

statements arranged in a predetermined order by the programmer. Each procedure statement

states what procedure is going to be executed on what cell, and specifies repetition clauses,

if any. The program statements appear within a PROGRAM END block. The syntax of

a program statement is as follows:
< cell-name >. i procedure-name > [(< contlition > I < repetition-times >)];

The procedure-name is the name of a procedure that has been defined previously. Similarly
the cell-name is also the name of a cell that has already been declared. Repetition clauses,
if any, must be specified either as a condition, or as the number of repetition-times that a proce-

dure is to be executed These are enclosed within parentheses. An example program declara-

tion is given below.

Program
ManufacCell.ProduceBody;
StorageCel1.StoreParts (ManufacCell.SignalOn);

ManufacCell.ProduceBody(50); * Repeat 50 times
StorageCell.StoreParts(50);

End

In CPL, every statement excepting block markers end with a semicolon. The program-
mer may insert comments in the program by preceding the comment with an asterisk, which
is the comment character. A valid program statement and a comment may be typed on the
same line, but the comment should follow the program statement. The reverse is, however.

not true, because all characters in a line following a comment character are ignored by the

CPL compiler. The syntax of this language is kept simple and compact in order to make it
more appealing to users. At the end of the compilation, a cross-reference output listing the
cross referencing between various devices and ports is printed. Error handling is performed

by an error object which prints out error messages with corresponding line numbers and error

codes. An example of a complete CPL program is given in appendix E.

5. Using CPL

To invoke the CPL system from the network, type the command

CPL drive pathname filename
The drive is the drive on which the input and program files are located, and the ytrth-

name is any absolute or relative DOS path specification. Absolute path specifications are

given from the root directory and relative path names are given from the current directory.

The filename is any combination of alphabetic characters, and the entire file specification
should not exceed thirty characters.

The CPL program file can be edited using any standard editor, and should be stored

as an ASCII text file. One advantage of structuring the CPL system as two independent com-
ponents is that the execution is not tied up with the compilation process. To execute the CPL,
program type the command

CIMINT drive:pathname filename.
The CPL program can also be executed in the debug mode. To do this, type the com-

mand

CIMINT -d drive pathname filename.
The debug mode will execute the program in steps and the user can trace through the program.
This is especially useful for locating program errors.

6. CPL Errors

Errors in the program are detected by the compiler and displayed onto the screen at
the end of the compilation. At this point errors are not output into a list file, but this feature
may appear in future versions of the compiler. CPL compiler errors are of three types: Syntax
Errors, Fatal Errors, and Warning Errors. Currently the compiler allows a maximum of five
syntax errors before it terminates abnormally. Fatal errors are those that make it impossible
for the compilation process to continue. As such the compiler terminates execution immedi-
ately after a fatal error is discovered; no count of fatal errors is kept. Warning errors are those
that do not seriously affect the production of p-code, but may produce unpredictable results
at run-time, or impede the debugging process by producing incorrect cross references. Al-
though warning errors are detected and displayed, they are ignored by the compiler. A de-
scription of the standard error messages produced by the CPL compiler are listed in the fol-
lowing pages, along with hints to rectify the errors.

UNOPNSRCFIL - Unable to open source file

The compiler was unable to open the source file, because of incorrect path specifica-
tion or access violation. Restart compiler with correct path name, and check access protection
for the file.

UNOPNERRFIL - Unable to open errors database

The compiler was unable to open the file containing the compiler error messages. Con-
sult the system administrator or the person in charge of maintaining the CPL system.

UNOPNOUTFIL - Unable to create output file

The compiler was unable to create the output p-code file. Check the drive status if
drive included in the path specification. Restart the compiler with the correct path name.

EREADSRCFIL - Unable to read source file

The source program file contained some extraneous characters which the program
could not decipher, or the compiler does not have read access for the fife. Check the source
file for any extraneous characters, and also check the group and world access protection for
the file.

PARSERERROR - Undefined action code

A bug in the CPL compiler. Consult the system administrator.

UNOPNCMDFIL - Unable to open the command file

The compiler was unable to open a command file specified in the program. Check

the name of the command file specified for spelling errors. and also check if the command

file is present in the same directory as the input file.

UNREAERRFIL - Unable to read from errors file

The compiler was unable to read the file containing the error messages. Consult the

system administrator.

UNRESERRPTR - Unable to reset error file pointer

The compiler is unable to reset the file pointer for the error file. Consult the system

administrator.

6.2. SYNT-

SEMICOLEXPT - Semicolon ; expected

A semicolon was not found where expected. Insert a semicolon at the end of the state-

ment appearing on the line indicated by the line number in the error message.

FUNCOPREXPT - Function operator expected

The function operator '.' was omitted in a procedure statement. Insert the function
operator after the device name in the procedure statement appearing on the line indicated by

the line number in the error message.

UNDEFIDENTF - Undefined identifier

The identifier discovered was not declared previously in a declaration section. Enter

a declaration for the identifier in the corresponding declaration section.

IDENTIFEXPT - Identifier expected

The compiler was expecting to find an identifier, but could not find one. Include the

necessary identifier in the statement appearing on the line indicated by the line number in the

error message.

TYPADDREXPT - Type name or address expected

A port variable was not assigned an address or a serial port type. Insert a port address

or serial port name in the statement appearing on the line indicated by the line number in the

error message.

INCORRSERPORT - An incorrect serial port was specified

An incorrect serial port was specified in the declaration of a serial port variable.

Check the serial port name in the definition for predefined serial ports, and correct spelling

errors, if any.

INTEGEREXPT - Integer expected

An integer was not found where expected. Check program to locate actual error and

make the necessary changes.

INVALDEVTYP - Invalid device type

The device type specified in a device declaration is invalid. Check declaration for

spelling errors, and change it to a known device type. If error persists even after correction,

consult the system administrator.

DEVTYPEXPT - Device type expected

The compiler was expecting a device type, but did not find one. Check the syntax and

make necessary changes.

INVALIDFUNC - Invalid function name

The function name specified is not valid for the accompanying device type. Check the

manual for permitted functions for the device type specified, and make the necessary changes.

KEYVVORDEXPT - Keyword expected

An was not found where expected. Check program to locate actual error and make

the necessary changes. If error persists even after correction, consult the system administra-

tor.

PARITYMISMA - Parameters type mismatch

The parameter type specified does not match with the type expected.

PORTKEYEXPT - expected keywords: Ports

The port declaration section did not begin with the keyword, Ports.

DEVKEYWEXPT - expected keywords: Devices

The device declaration section did not begin with the keyword, Devices.

PROCKEYEXPT - expected keywords: Ports

The port declaration section did not begin with the keyword, Procedure.

UNOPNCRFILE - Unable to open cross reference file

The compiler was unable to create or open the cross-reference file. Check the drive

status if drive included in the path specification. Restart the compiler with the correct path

name. This error does not stop the generation of p-code in the output file, but does not pro-
duce useful debugging information.

BAUDNOTSPEC - Baud rate not specified

The baud rate for the serial port specification was not specified in the port declaration
section. The compiler will assume the default baud rate which may not match the actual baud

rate for the connected device.

STMTNOEFFEC - Statement has no effect in code

A procedure statement or program statement was discovered without any function

name. Such a statement is meaningless, and does not produce any p-code.

UNOPNTRCFIL - Unable to open trace file

The compiler was unable to create or open the trace file, which is a temporary file used

to output source code statements needed to send trace information to the interpreter. Check
the drive status if drive included in the path specification. Restart the compiler with the cor-

rect path name. This error does not stop the generation of p-code in the output file, but does

not produce useful debugging information.

Appendix D
I-Code Representation

Note: The italicized text represents the CPL statement whose I-code representation appears below.
I I Comport COMI: 300 7 2 0
9 6 4 2 4 0 0
11 PortA 64256 Input
10 64256 input
I I PortB 64257 Output
10 64257 output
I I PortC 64258 Outyut
10 64258 output
1 I LntheHrmdshcrke.Strobe
7 64257 0 1
11 LotheG66inp. Strobe
7 64257 1 1
I I Lrrthe. Do(lond1~ithe)
8COMl %

8COMl N'G' X ' Z ' F' H

8 COMl 03 01 - 50 50 25

8 COMl 04 01 00 500 25

8 COMl 05 01 50 50 25

8 COMl 0700 00 6500

8 COMl 08M05

8 COMl 09M00

8COM1 "

I I Robot. Send (''AT'?
5 LPTl NT
1 I PrrlletStops. On
1 64258 0 1

I I Conveyor: On
1 64258 5 1
11 PhotoCell. Whiton
3 64256 7 1
I1 PnlletStops. O f
2 64258 0 0
11 PcrNetArrived. WuitOn
3 64256 6 1
I I Delciy 1000
6 1000
I1 PnrlletLifr Up. Strobe
7 64258 4 1
I1 PnlletLifred. WnitOn
3 64256 5 1
11 Conveyoe O f
2 64258 5 0
I I ChuckOpen.Strobe
7 64258 1 1
I I Robot. Do(loodp(z~?)
8 LPTl MI -2400,-1600,800,1570,1390,0
8 LPTl MI 0,-240.-540,225,-225,O
8 LPTl GC
8 LPTl MI 0,1020,-240,-55,55,0
8 LPTl MI -7200,200,1000,0,0,0
8 LPTl MI 250,-1800.1700,0,0,0
8 LPTl MI 20,-530,175,0,0,0
8 LPTl MI -130,0,0,0,0,0
I1 Delriy 1000
6 1000
11 ChuckClose.Strobe
7 64258 3 1
1 I Delny. 2000
6 2000
I I Robot. Do(moveawny)
8 LPTl GO
8 LPTl MI 130,0,0,0,0.0
8 LPTl MI -20,530,-l75,O.O.O
8 LPTl MI 0,2360,-2660,-1680,-1160,O
I I Delciy. 2000
6 2000
11 LutheStnrt. Strobe
7 64258 2 1
I1 LtrtheStop. WiitOfl
4 64256 4 0
I I Robot. Do(MoveBnck)

8 LPTl MI -250,-560,960,1680,1160,O
8 LPTl MI 250,-1800.1700,0,0,0
8 LPTl MI 20,-530,175,0,0,0
8 LPTl MI -130,0,0,0,0,0
8 LPTl GC
11 Deltry. 2000
6 2000
11 ChuckOpen. Strobe
7 64258 1 1
1 1 Delny. 2000
6 2000
I1 Robot. Do(GetP6trt)
8 LPTl MI 130,0,0,0,0,0
8 LPTl MI -20,530,-175,0,0,0
8 LPTl MI -250.1800,-1700,0,0,0
8 LPTl MI 7200,0,0,0,0,0
8 LPTl MI 0,-1180,-760,55,-55,O
8 LPTl GO
8 LPTl MI 2300,1700,-160,-1695,-1265,O
8 LPTl NT
I1 P(tlletSfops. On
1 64258 0 1
11 PrrNefLiffL)own. Strobe
7 64258 6 1
1 1 Conveyor. On
1 64258 5 1
1 I Dekzy. 500
6 500
11 Conveyor. Off
2 64258 5 0
1 I PcrNetStops. O f
2 64258 0 0
11 LntheStrrrt. Strobe
7 64258 2 1
I I LofheH(rndshake. Strobe
7 64257 0 1

Appendix E
Class Hierarchy for the Interpreter

I I 1 I
f f I f Strobe-t

porrId
bit

valrre

Strobe-t

execute

SetBit-t QueryWait-t
I I

porrId porr Id

setBit-t QueryWait-t

execute execute

\ d' \ J

Wait-t
I

porrId
bit

value
,

Wait-t

execute

SendStringt

porrId
bit

Appendix F
Code for CPL Interpreter

// Instruction class hierarchy

#ifndef INSTRUCT-H
#define INSTRUCT-H

#define SIZE 80
#define TRUE 1
#define FALSE 0

class instruction-t {
int op-code;
char name[21];

public:
instruction-t(int op = 0, char *n = "Noop") { op-code = op; strcpy(name,n);)
int isA(char ":):
char "'nameOf(void):
int op-codeOf(void);
virtual int execute(void) = 0;
virtual int numOi~Ins(void){return(1);):

}:

class cplsource : public instruction-t (
private:

int pCodeInst;
char "kplCode;

public:
cplSource(int pCode, char "cp1Buffer);
int numOfP Ins(void);
int execu tetvoid);

1:
class setBit-t : public instruction-t {

unsigned int portid;
int bit;
int value;

public:
setBi t-t(F1LE "Tp);
int execute(void);

):

class querywait-t : public instruction-t {
unsigned int portid;
int bit:
int value:

public:
querywait-t(FILE "fp):
in t execute(void):

1:
class wait-t : public instruction-t {

int millisec:
public:

wai t-t(F1LE "fp);
in t execute(void):

1:
class sendstring-t : public instruction-t {

char port[l6];
char text[80]:

static int flag:
public:

sendstring-t(F1LE "fp);
int execute(void):

1:

class strobe-t : public instruction-t {
unsigned int portid;
int bit;
int value;

public:
strobe-t(FILE '"fp):
int execute(void);

1;
class commsetup: public instruction-t {

unsigned char baudRate;
unsigned char dataBits;
unsigned char stopBits:
unsigned char parity;

int commport;
public:

commSetup(F1LE "fp):
int execute(void):

1:
class dabsetup: public instruction-t {

unsigned int portid:

char mode[lO];
static int portInitialized;

public:
dabset up(F1LE "" fp);

int execute(void);

1:

i#i fndef LIST-H
#define LIST-H

/I
I / class definition for a list "selectable" objects.
//
I/ this is a generic list class -- change the type names and reuse.
I/

/I
// Change this typedef to make the list operate on other types
/I

typedef instruction-t " objptr-t;

struct entry_t { /I doubly linked list entry
objptr-t obj;
struct entry-t '"prev, '''next;

}:

class list-t (

public:
list-t(void);
- list-t(void);

void insert(objptr-t obj);
void append(objptr-t obj);
void rernove(objptr-t obj);
int length(void);

objptr-t first(void);
objptr-t next(void);
objptr-t last(void);
objptr-t prev(void);

private:
entry-t head, tail, "cursor;
int n-entries;

// end of file

#ifndef FUNC-H
#define FUNC-H

/:@ Function opcode definitions "/

#define CON
#define COFF
#define CWAITON
#define CWAITOFF 4
#define CSEND
#define C WAIT
#define CSTROBE
#define CDO
#define CCOMSETUP
#define CDABSETUP 10

extern int trace, singlestep;

// Methods for instruction-t

int instruction-t::isA(char "n)

{
if (strcmp("instruction-t",n) = = 0) return 1:
else return 0:

1
char '"nstruction-t::nameOf(void)

{
return(name):

1
int ins truction-t::op-codeOf(void)

{
return(op-code);

1
//Methods for cplsource

cplSource::cplSource(int pCode, char "'cplBuffer) : instruction-t (CPL-COMMAND, "cplSource")

{
pCodeInst = pCode:
cplCode = new char[strlen(cplBuffer) + I]:
strncpy(cplCode, cplBuffer, strlen(cp1Buffer) + 1):

1
int cplSource::numOfl>Ins(void)

{
return(pCode1nst);

1
int cplSource::execute(void)

{
if (trace)

{
clrscr();
printf("%sV, cplcode):
delay(2000);

1
if (singles tep)

{
clrscr();

printf("%s", cplcode);
printf("\nHit return to continue");

getch();
clrscr();
printf("\nWait ...") :

1
return(1);

}

I/ Methods for setBit-t

setBit-t::setBit-t(FILE *fp) : instruction-t (SET-BIT-ON, "setBit-t")
l

int setBit-t::execute(void)

{
unsigned char status = inportb(portid);
unsigned char mask = 1 < < bit;

if (value)
outportb(portid, status)mask);

else
outportb(portid,status& -mask);

#ifdef VERBOSE
printf("Executed setBit, port = %u, bit = %d, value = %d\nW,

portid,bit,value);
#endif

return 1;
1

// Methods for wait-t

wait - t::wait - t(FILE "Tp) : instruction-t (WAIT "wait-t")

{
fscanyfp, "%d", &millisec):

}

wait-t::execute(void)

{
delay(mil1isec);
return 1;

1
// Methods for querywait-t

query Wai t-t::execute(void)

{
unsigned char result = inportb(portid);
unsigned char mask = 1 < < bit;

if(value = = 1)
while(!(mask & result)) result = inportb(portid);

else
while((mask & result)) result = inportb(p0rtid);

#ifdef VERBOSE
printf("queryWait value = %d, bit = %d, port = %d\nW,

value,bit,result);
#endif
return 1:

1
// Methods for sendstring-t

fscanf(fp. "%sW, port):
fgets(text, sizeof(text), fp);

1
sendstring-t::execute(void)

{
char "ip = text:
int len:

if (strcmp(port, "LPT1") = = 0)
{

len = strlen(text);
for(ip = text; "ip = = ' ' && '9p ! = '\O'; ipi- +);

text[len-l] = '\r';
text[len] = '\n';
text[len + 1] = '\0';
fprintf(stdprn,"%s",ip);

1
if (strcmp(port, "COM1") = = 0)

{
// set RTS bit. CTS is automatically set on
I/ the null modem.
//outportb(Ox3fc, 1);
len = strIen(text);
text[len-l] = '\r';
text[len] = '\n';
text[len + l] = '\0':

/I now down load the string contained in text
for(int i = 0; i < strlen(text); i + +)
{

while (text[i] = = 0x40)
i + +;

int mask = 1< <5:
int status = inportb(Ox3fd);

I/ Is the transmitter holding
register empty?'?

while (!(status & mask))
status = inportb(Ox3fd):

Iloutportb(Ox3fe, 0);
outportb(Ox3f8, textli]);

Afdef VERBOSE
printf("sendString execute, sent %s\nW,text);

#endif
return 1;

1
/I Methods for strobe-t

strobe-t::strobe-t(F1LE 'Yp) : instruction-t (STROBE, "strobe-t")

{

int strobe-t::execute(void)

{

unsigned char status = inportb(portid);
unsigned char mask = 1 < < bit:

if (value)

{
outportb(portid. status I mask);
delay(500);
outportb(portid, status& - mask);
deIay(500);

}
else

{
outportb(portid, status& - mask):
delay(500):
outportb(portid, status I mask);
delay(500);

}
Afdef VERBOSE

printf("Executed strobe, port = %u, bit = %d, value = %d\n",
portid,bit,value);

fendif
return 1;

}

// Methods for commsetup

commSetup::commSetup(FILE '"fp) : instruction-t (COMM-SETUP, "commSetup")

{
fscanf(fp,"%d %d %d %d %d",&baudRate,&dataBits,&stopBits. &parity, &cornmPort);

int commSetup::execute(void)
{

char settings = baudRate 1 dataBits (stopBits (parity:

bioscom(0, settings, commPort);

#ifdef VERBOSE
printf("Executed commsetup, baudRate = %d, dataBits -- %d, stopBits = %d, parity = %d,

con11nPort = %d\n",
baudRate,dataBits,stopBits, parity, commPort);

#endif
return 1;

1
// Methods for dabsetup

dabSetup::dabSetup(FILE *fp) : instruction-t (DAB-SETUP, "dabsetup")
{

fscanf(fp,"%u %sW,&portid,mode);

int dabSetup::execute(void)

:"IMPORTANT! The following piece of code sets up the :"

:': Intel 8255A 110 chip with ports B, C for output *

and port A for input. Any changes or replacements done *
:i: in the future should corressspondingly be made here. '"

'"lease consult the hardware manual if in doubt. I:

:~:~:~:~:~~:p:~~:~::p:I;~:i:~:~4?I::g:I:?cH::I:44~4S::I:~B~1:~:F~:~:~N:~:I::k~iI::]:~4:i::I::I:4~~~:~:44:I:/

outportb(portid, 0);
if(!portInitialized)

{
outportb(64259,144);
portInitialized = TRUE;

}

#ifdef VERBOSE
printf("Executed dabsetup, portid = %u, mode = %s\nV, portid, mode);

#endif
return 1;

1

char cplBuffer[SIZEJ:
FlLE "'InputFile:
char "FileName;
int trace = FALSE:
int singlestep = FALSE:

int get-instructions(1ist-t "ilist, list-t "'sourceList)
{

instruction-t '"ptr:
int opcode, pCode:
int FirstTime = FALSE:

if((lnputFi1e = fopen(FileName, "r")) = = NULL)

{
printf("\nInput file not found"):
return(0);

1
while (fscanf(InputFile,"%d",&opcode) = = 1)

{
switch(opcode)
{

case COMM-SETUP:
ilist- > append(new commSetup(InputFile)):
pCode + + :
break:

case DAB-SETUP:
ilist- > appendinew dabSetup(1nputFile)):
pCode + + ;
break:

case SET-BIT-ON:
case SET-BIT-OFF:

ilist- > append(new setBit-t(1nputFile)):
pCode + + :
break:

case QUERY-WAIT-ON:
case QUERY-WAIT-OFF:

ilist- > append(new querywait-t(InputFi1e));
pCode + + ;
break;

case SEND-STRING:
case DO:

ilist- > append(new sendstring-t(1nputFile));
pCode + + :
break;

case WAIT
ilist- > append(new wait-t(1nputFile)):
pCode + + :
break:

case STROBE:
ilist- > append(new strobe-t(1nputFile));
pCode + + :
break;

case CPL-COMMAND:
if(FirstTime)

{
fgets(cplBuffer, SIZE, InputFile);
pCode = 0;

FirstTime = FALSE;
break:

1
sourcelist- > append(new cplSource(pCode, cplBuffer));
pCode = 0:
fgets(cplBuffer, SIZE, InputFile);
break:

default:
printf("Undefined opcode %d\nV,opcode);

1
1
11 append the last piece of source code.
sourcelist- > append(new cplSource(pCode, cplBuffer)):
return I;

1

int execute-instructions(1ist-t ''"ilist, list-t 3:sourceList)

{
instruction-t '"iptr = ilist- > first();
instruction-t "'sourcePtr = sourcelist- > first():
while (iptr ! = NULL) {

if(trace 1 singlestep)

sourceptr- > execute();
for(int i = 0; i < sourceptr- > nurnOfPIns(); i + +)
{

if(!iptr- > execute())
return(0);

iptr = ilist- > next();

1
sourcePtr = sourcelist- > next();

1
return 1;

1
main(int argc, char *argv[])

{
int status;
list-t 'ilist = new list-t:
list-t "sourcelist = new list-t;

FileName = new char[strlen(argv[l]) + 31;
strcpy(FileName, "s:\OW);
swi tch(argc)

{
case 1:

printf("Standard usage: interprt [/debug] < file-name > \n");
return(0);

case 2:
strncat(FileName, argv[l], strlen(argv[l])+ 1);
break;

case 3:
if (strcmpi(argv[l], "-t\OW) = = 0)

trace = TRUE;
else

if (strcmpi(argv[l], "-s\O") = = 0)
singlestep = TRUE;

else

{
printf("\nunknown option"):
re turn(0):

strncat(FileName, argv[2], strlen(argvl21) + I);
break;

1
if (get - instructions(ilist, sourcelist))

status = execute-instructions(ilist, sourcelist);
if (!status)

{
clrscr();
printf("\naborting at users request ... \n");
return(0);

1
return 0;

//
/I Member functions for the list class. This list class has the
/I property that elements are always added at the head. This list
I / only contains objects of class "selectable".
//

head.obj = (objptr-t)NULL;
head.next = &tail:
head.prev = (entry-t *)NULL;

tail.obj = (objptr-t)NULL;
tail.prev = &head;
tail.next = (entry-t '"NULL;

cursor = &head;
n-entries = 0;

return;

1
list-t:: - list-t(void) {

entry-t "'temp;

cursor = head.next;

while (cursor ! = &tail) {
temp = cursor;
cursor = cursor- > next;
delete temp;

1
return;

1
void list-t::insert(objptr-t obj) {

cursor = head.next;
head.next = new entry-t:
head.next- > obj = obj;
head.next- > next = cursor:
head.next- > prev = &head;
cursor- > prev = head.next;

n-entries + + ;
return;
1

void list-t::append(objptr-t obj) {

cursor = tail.prev;
tail.prev = new entry-t;
tail.prev- > obj = obj;
tail.prev- > prev = cursor;
tail.prev- > next = &tail;
cursor- > next = tail.prev;

n-entries + + ;
return;

1
void list-t::remove(objptr-t obj) {

int deleted = 0:

cursor = head.next:

while (cursor ! = &tail && !deleted) {
if (cursor- > obj = = obj) {

cursor- > prev- > next = cursor- > next:
cursor- > next- > prev = cursor- > prev;
cursor- > obj = (objptr-t)NULL:
delete cursor;
deleted = 1;
n-entries-;

}
else {

cursor = cursor- > next;
}

return;
1

objptr-t list-t::first(void) {

cursor = head.next;

return cursor- > obj;
1

objptr-t list-t::next(void) {

if (cursor ! = &tail) cursor = cursor- > next;

return cursor- > obj;

I-
objptr-t list-t::last(void) {

cursor = tail.prev;

return cursor- > obj:
1

objptr-t list-t::prev(void) {

if (cursor ! = &head) cursor = cursor- > prev;

return cursor- > obj;
I-

int list-t::length(void) {

return n-entries:
I-

// end of file

Appendix G
Schematic Representation of the Network to Support CIM

I ~ i l e Server I

UTP Hub
To additional

Ethernet 'Rvisted Pair Cable stations

I I,

Ethernet Thin Coaxial Cable
.+ To additional

stations

Cell Controller Cell Controller

CAD /CA W
Stations

J

CAD/CAM
Stations

i

FC~NE:"~ uf..]: g-, ,.... !-. ,.:: .:: 9.. ,- cL. ,..: -:. -- a p or .k. c:s~::c ,j ec "i:.n (:I p SF. !tip:; a g > L . . I ~ "" .- "i: c$~i:l&4l'-~t,iCl:tri tatem^ em^
n .k.

ar;:c::al-,i:i:iisq .tf-$e ~~.;in~,.a>r c-@+inet:j 5.f-f C:P?... gyami!jaj;., If a n y ey-lr-(:::q- j . 5

~:fj,:;c~~::~.;cer-e& an apf:ii;-i::tpria'ta e,;-iFi:>r- mesycage i s pr - in . t ed i : : j t . ~ t ,

the r:i..wr-

.k E3).' "' r) '5 ; : "[f.. .' E:, 'i .i I" " .. k! ..-. l .i ir

'L. ..::. 1.. r" f.:: 61 'F

4 ." .t ..-. 2.T y* p e (j z:: :.. .* a "r 1 g f,j 'T j' 1::: 1 ER j / .#. c.. .. kp~:: ... 1:: f c3jV f:g i:!?:" t \,far j, aka
j @ .#. ,/

<
z;.tyc:py (pap"tName.?,t:::.It:jen.ti .f icy. [)) ;
i .f < .t .-.. >f.fe:>; t { 3 :::X "f' 1 f , $ " r f ' ~ E ~ ?) / :i c hec i:: .F or.- ~3 r:,r'k acjtjr."i.z!:.

5; .& /
.b" ., - ,...' .: .. rr \..jf,:2 "r C)st-.*.:: ::z ..I!.> -, .-z6., * ;

(2 ~ . .W{d {:j i*- e :x= t I::. j' ~7 t e> q PI;.. f ? a

:; .f "; !,: .j, .j' =:: t ".f,jg:: ,,.,,". c. (;) ;.:- 'T'k'F"%{@\["lRZ>5 ez 3,: /.% d i r ec t i i : rn
<;: j-, e c i:: .+ .:!

i , . 3- ... - - . t)t p Q (:) E: :e:: 9 1:iPkj~'f' j ' 3 e)i i)

{ , .I- ..-:.w .. F3., .jr.i/y!~e : . j :% :-EL E:::(:jIJ'j"FCJ'T) 1 :I 1

.,
sp

.i: p ~ - j f - , . k . F { " \ n % s n ' , .k,
..... " . .

.:. rsr a j l :i n e f j j *

pri n t + ! *'L. . i rse ?id .. , j , .k '::.l i n ;:.:, . = . ." . ,,- g"j\qifsj f) , ee ~ :::.?- eaf:J pi;- r- i:~r (..,"E ..,,, :(~' '~$t[3j.:~f.+E XP''j- > 1 ;
$.. e .-.. 1::. i: i-.: e r_ 1.:: er' y or $5 <

ER;q[:jf.q '1" 3 * P

print+ i "L. . j ,n@ "i,~! ~ , . . - ~ G .] ~ ~ C : $ ~ %.. -. r,

f .E $j{.$pj~: t j@.@j . ce ,..,, .iz E r de.;i i;e~""t
.y :frf.:a E; 2 C 2 a s 5% E:' t3n st:. t;- t..t i::: t. (:?T

;f~f>i,j'.f- F>ARA~E"~-E!;$s~ taj.:eii t .~ "
,k. 1-1 e i:: 1.i P- ir, en t t a hi en

e,~~ei.i.t: < - . - I ?r i . r : i i : new type
$:~r..ii yjek)~p~>~+..C:
by ea): ;

C" " ""P j,:..g: ". "' 'i '"'8 ,' " P ' ' ' .. b., *. ,., *!.:~..it~:i..lt% ff.i13t...E: : ; .! ic: t.. -,:, ,...-.. ke pr-i-11gr-amma$:LP c ! ~ ? v ~ c : &
d e.~; i !:: ef:"t y- := n ~ t > w p r c p - 3 : e,,,.. t f ,t 3 q
I:"l..r..r:p~y t, <'k..ypg>nairie, "Fk[~GRfil~i ' iJ&Et, , ,~" ;I *

if: {!- ." ..-;, .j. . . , J . . ear-
-$ t $. ~ q %.. > f-i l~ .= :::z:7.2 0 j n l . ~ fi;l t y gs fi ..$. .;- ; ,::' ,/ :[f-# t:: t- p

~3 $7, :::. c ti e c:: j.: p.. p* rii l ~ . 5 (E; R [J ii j Z

a i: r: i:r y cl i. rig .t i:;) 't "i e ~5 y n .k a >i e .f: :i i.i @c:l :i rs + ,e,te i- - CF::'j,.. gr.a,n!nar, etr5.,,/ I <~:~ry-<:~r ,.., j , ~ .

<j j, .E. 4: $:>.%/ c>r" t? {2 ? 3 f"$;3 p ;> r-. q : j f" j. ;3 *:? p p - clr- ffi c? 5:. c:. ;.! {Z $2 j, rG 13 p- f-f .i: G? !:j (-J?,A ' i ~ a

i j "l'i:':'i j -i" ~"0" (,>>ME_ 'f' Ef: f:;;S .. -. f-3:
N .". ... "- r-rl i ?::?

in t ,,.., k. ++ c: ti a p- ,% ,, i n .k , :i r": .k !

;;"{, Ipji:":'.i" '' r * .. I 1. 3:3Ne Ci.-eates a senr;ar ob,je<::.k. and parrse:; a Isen:st:sr- de..#it::e t ype
(..s ... ,.,t t-c 3, ai' a.t. :i. i::sn ai::: i:: ar ci j. r-ti;; .t: a t k e siyj-).k a:;: a;je.f::ifiei:j i f. i 'the CpI-,, i ;~1*-amjnay- , I.$.

a r-$ y
pr;-yor- :is i::+iscgrr.*,2:~r-ecL 3f.i a~>e::~l;..(;,py:ia.te err.nl;.. ... me E. 5; a a e :i ?I; gr u- i 13 t ed ~i.,~.i: ,

f.E P.' j, fi .t: .$

8. /

ee .. ;.rpiFb:.rb):Fhry-i':cf.c .".J {F'RPCiR % - "f'j F
> 3'

't.

.?'/ i.h: not r:tec:t.aj~-er:! 1srin.t ej;..p-c:~-
el ~ $ 2

.[p :i n .t:, .f (" j ri % 5; " , t 1;. 'r h j, c; 11, i rj E? (1)
p P- 'J fl f:. .$ J 9 t,... j. &-",<-.-ai:i.;;u ', .!: >.[,,, j, ne rr!,.lm (> , ee-.- ::.r @adey- y- or 1: E

{, f)l.3DEf:' I DEI:J'TF" j 5 ;
ee..-. :::.(; h p t r : k el*- y- cry 5; E:R&;{::]F:< "j" j ;

2.
::.
t:> 'j >;.e p r - i f - f t $ i1"Z../nta::.: e r r o r if-(t--i:>r.j;..ect d.;?.-,i:ice d@clara%.:ian'.,nu) ;
r p ";" i f-, 'k .f (" i,s i.3 % $5 t :::.'~f't-g ;j, !> j, n e (j j *

p ~ " j, j-#*, .f f " i,',:, ng %d X@O!sl">.-. r- - rri,im f) , ~ze- . - " .- -3 .:
7 f* ..,.. .r.r t, Li~feir.~~3~‘. 6; ,,,,. E :f: DENT IF-E:

y i'" T) j *
.a, i- 9

ee :::.c; f-, ec; 1.:: e y - r- t;. 5 { E[:iRaR "f' j = I

:r.

",.. ,,
t- Jr-Jr, f i: ON :: Cr.aa,l-.as a ptr l iaa c:#b.;,iec:t and par-~?x+!s a c:r:5il < 3 ~ ~ i i : t 3 ~ Y P E
c.! @ c :i, a j;.. a -i- , " . i i . . r$r .:- a~ci::ii'i:i:in!;j ti:> ?the ii?.,iit$a>i i : le. f i fseci i n ti-se C:f:>! ... grammar, , I f arty
&~.i.-a~- .j,is ~ : j ~ . ! i ; l : : : f ~ . ~ g ~ ~ r - ~ ~ ~ J g an appi.-<:*p-. ej;..r-ojP m e s m a a e i s pr-if-,%;ed t:ru't.

%. c:! t:: E? n ..,,, .t: t : Z i:i en .t .i 4:

. . , , . . . k . j , , 9 k : iTj @V i c .h (" j2t.i i .z;~? ,,,,, .t j i f
r

j, + { .t ...- ::.NP:%: .k <) r z r::
"r' -.>....h " . ..

r 3. l.ik#*J i .t FZ5Ef-:::!
C

.// %eap..ch $csr- id@r-$t: i . f : ie~ !i~...,yi.r~t:~i-~l .k.ggi2j,t?

i.i' (! !'.;~~b..~-:::.~~ear.-~::h~IJ{.J~.~~...., . k , - - : > . : [i j e r r t j + i & ? y - { j , i.!'PO)iPS, 0) =:== NLjLk..))
C

cz .&. .".. L. r:.. i:: p)i C p or t Nail) e +k. ::. i: CI er-$ t :i 4: i e tr. 1 5 1 ;
j, .F . . : <) :::=:::

L_,I 'T' I'.l'f EEETk f

\,

kt i .t ..: .t :::. I r- I -' teger I:) ;
?: .F <,k..-:::.fiie:,:.t ,:i :=:z 'T5ENICOL,,C]fI'j:j

i'

R i f d p f j.,jEf::EDSE
p~-ir-~t.f: (" D & v ~ c - ~ par'.;ed s ~ . ~ c : ~ : : : ~ ; ~ P ~ s . ~ : ~ , ~ : ~ X . , ~ ~ , ~ ~ ~ ') : .f

tend i .F
k-. K.;.k $,.-. L .. I I i &

'?.

e:,
r
i. t,. ' : : . -~h:i i~ .~:~l"f$:?!j): :

p r i r r . t . f < r f , - %...-f3<35" 9 .&.-.-:.g .- .. *.." 3. ' b-i 6? ..,- !-$i..tiYt < > 5 E?

gf.....'::.r-eadey-r-oy (E SE~f. f .Z 'C~~,, .EXF"~j) v. , ?

ep ...- .::.<I: f.r e i"; t:: e y. p- f~r ; . . !:; < E HMf-j!::;; 'y j 3, ... " P

2.

,,- .& ~'r i$.+b"j t pi;-csgr-arrrmabi e t : f; p~-i>g~a!iiiiiab.t e,,",t ...-
"C' , \ ,, F" i':: .

*... ,, C:i ass c:t:~~!:>t~t.,ic:.t.i:::ir

F,; { ,,
.,., i d L-: I .i i:1 2 c;..- ,r r..i2.i.,exj A. ;. ~ y - . . i - s y ~ ~ ~ i ! ~ ~ ~ ; i ~ t . : ~ I , e ob.:jer;.b and pa~sg+is a ccii dev:i.ce t.jr)e

i -s y

dec.1ara.kicx-i ai::r:i:irbirsq .kc> the s~n,ta>r ciedined i n i rke C:P1 ... gr-ai.limar-, 1.F any
eri;r-y i c : . r:t:isccrveu.ed, a~:s~i~i::t~:fii":ia.T-:e ~i.!..c#i;- :%e~;sage is pir.:injrei:l i:jt.t'k,

'.il'. .j ,... + .f "'
p ... I , " , . \ yi % 5;; " ,$.I- --. ';. 3" ... 'Ti3 3 E. :i. 5. r-t E! < 3 j ;

..... p p - i 3-g .(: .$ < 'YL i r-! P % c j % 8$<:: ..., r .& ...-:I :.f . ne t i i,~ fli < j is e ...- >.r c . a i-j ep- 3- csr (.,." E ,.-

i"; i:; f";; 8,:" ;I f". f:'D 2;:; i-, I '' - ' ,- . .. , ... 41-4[.. .[01'.,iS: k~;'afii;j, ajr.e.,,,;t : :: ~jarr>~I: : :*~ .~ j~ec$ \ - \~ -e

rt; ,.,. ,,, 1.3- I [..j 'r f" f i !?&ME: "r [!:f:i; E.; ;: f.jan e

P.. 3-!rI c: ,... " :::.;iC:f & l'.. ESfj. :=: < ($.?C!l'.. .t t *.. *... .. .".

. . . Fz i..,!t:ic: "f' 1 f::@*J : P;ar.c::.e.i:. ..- a r:a:{..i. (:f~+.:,,*:ice .t;)i!:,e tje"%ara'tic-n accc,r.,c-ing .!:,fie sii;nta>;
d e f i n e d is7 t h e CP1.. grainmar, :i:.f a ny erP-r:jir. i s disct3ver.ed, a!-$ ayspr-opj-iate
eyy.i:n,; ;ne!s.;age 2%; gry-:inted r:si..l.t,

. . r. .. t-in -. ,:.t:t i .t ::=: b j. .t ;
2.

2. j' ,fa en c/ .F .f: :j, y" s . k .f c"~p-

..:.
. . ,. ' , E cr.$ ~+2j~$:: : t~jf : j -!:f>p-

i . 6 , ' " , I - ' . < c-3 I. i cl :)
r pir':i rj.k-f: { " i,*n%sJj .t -... 1:. 'f' p ' ' ' $3. ::. i 3, YgE (:i j ;

f- ~ 1 ; ~ , g ~ . r \ r - . ~ r > I & ,-.ine %d % - - 8 t : i % j u , .k-.-:::.i-ifie rag-igj(:j , ee.-->,y-eade
,.."

j r i p C j k X (*,-E ...- $ Fj'il&t.,_ I DFzI.,jMiII > > ;
ee>.c;I-jer:f;eyr.'t~jg:?i;.~;(E[:;:~~f:;: ' T) ;

.i .& i;t :::.p,je:.:m .=:::.: T"--- g ;rt.M .2' cai ... c;tlsj >
C

j .f ;,lie$ t)EF{EnSE
p,r.. .j, zi 4: .g (i t <::.k. c4 .- . r . . .t 2 a r s e d 5\-tccess.$: I.!,:! :j, .:,j".,nfi :) "p

j*erj<-J i .f

r.ett,?,rn;
".
tx, :j, 5:. $2

ssy i n.tf (!j\ri%sJ"t >..'rPr-j. ine { : ' % ! 1 ;
pr i .k .f f j",," .j rs @ "" -j 7 <2f-)r 1;

2 . t * 5 , t.--:::4 ... irse .,,,, f-j!..ti'iifl, ~ 2 ~ " ~ ~ ~ ~ T - ~ ? a K i ~ 2

I ; - ~ .- . i s E,.,,,5jZM Tr'ni F- j':"''j")) ; !,.". - ."" -". . a " .

. " ,/ , ' "" I-" 'f' * ee..... :::.<: tier:: J.;ef"yE#$".s f t.t.,f:l.jr: P
?.

't)CC;~j "i' '\ ""' "
J. '.'I %.... t i . . , : ~ p r ~ j [{ f " ~ E ~ 5 E .L. ,,., <.. .,:I 1:. t::! t .n +.

.~...
.t p$ e c:: i.1 r- y en .t .k {::s j.:: Pr-!

, " .% .E. 46 .E. .#. JI. *. .# .g. .$. .g. *. *. .E. .#. .#. .j. * .#. .K. .#. .#. .# .g. .#. .E. 3. .# .#.& Q.*. .#. .)+ .#. .)i:. #. .#. .& .%. .% .%. .#. .#. .;4. .& .p":g..E. *. .)+ .h .#. *. .#. * .E..$<. .$+..#. .E. .j+ ++ #. .#. .g. .Pi. .#'& .& $<. .#. .E. >,'

.. .gt,,$,i,<j , . g:*i-rlse ,,,,, ?-,: :par.i:;et.kai.:en .t*, .t
..... i:J ev i c e ,,.,, .ls .g- c i t , ez: a i::: ,,,,. ;: r::x:J e %. i: i:7<Cj e)

i' 1.

.j fi .k. .s>~: a $:j ::. i') ::
'" 3

i .fi (.P t (j :.z 2:: 'r' l::>(3"r) . ."
f.

.i .f: t :::.$.Jp,: *. . . t (:) ..:.:: 'I"@ZE "\'W f:jF"x:j :3
I'
i .,' / c: ec k i .fi .%J a j, .j cl $!,.I ii (1: :i ssn

.#: (.j .k, .j .:: (' . , i . . v - -. :f, 1 ' cl$:;& j, .:, MAX :i::! EE *.a) ; j, -8- +. 3
.::

i: , ,' r , . . P[.P :!.. ':.'-I et s"e.,,$"f'y P (1 z:::,.. j, +. D E:'*J :[M 1::; E: 'g >
.: ,,'
: . !sf..s c3t-t 1 :rJ {:3 e 5

.f r->y (j, fit j zdc''; I .,~i.l i gr$:: j .:: f'l&XF:'i jbdC:' j ..I....$.)
" ?I

r:
.j .i: (t '>. j":: Q y .k, .:.it t-> &;? (j :::: :, 3 ..i..f.-Ljftl<S :[NDEX

i-

i:: i::! d e p t: c x : l e :=: 4: :.I n c t kj :I T I

pf: "j.. ! fg is t ?,i-. lf r:::' C:I
s r... s.. ? .*+: K G i d

c2.,$p-. ,... r c, I'EM

i .;: ; .k;.f,jc<5>.i f :> :n;::: ..r [) E:t ..p. < , I ?

i.

j .@ $,t 1::. f,.f;..;e>r .k;. () 2:: I*: -f"f'(: E y tAj :"I F:; * f a > F;;

I .!./ i::liei:)t if v a : t i d fi.\rsr;it<:sn w i t i . 2 v i t t l i c j pay-amel;p~-?;
.$: t~jy < j. ~3 f;, ;i, z:: ; ! 63 1 j, tj & 8; j, s: Pqgg j::jEL @.*? ; j. ..!- ..t..)

C
.i -i" i(-).b '.:.-.irs'i.'i. , ,,, ,. ., %,,, f-j E$.$9~ 1 p> c? { 11 ::I r: .i . ..g..L)E',j :[NDEX :! ". ..,..

i 2 s.: sf-jcsti3.d $e 5
.f'

$: $ 2 ~ (:i, n.t ,:,; ::::o ; ! .,+:a i d PsZe j PqAX F{-il:i[:> i ..t...t..)
3 ... <

i f : { %. :::.f.::: e y t y pe <) .= 2:: j ..t.,f.: l"jf,j['; 1 1 ; tifSfr :!

break:: ;
de.F atr 3 t :

b r-. e a $:: ;
3

.f
, . 1. .: ./ e n d (::sf 2r-$fj .f: c:cT..

:i .F C ? .;;a l i d)
{ pi":int+("%,j-8%':.i"3 ,t-.->.'T'f..ris;.:kirre{))

py- i .[{ " j, j-fi e %d 1',...-8<:js " + "::.I i n p 3 -

.t [:.. ::. .iz ... " 1;. "J" . . - ,,.. : g j I.? k::, i :i 1

r - i n g z:: n e w i:~lar.~:"E'tr-Xefi~'t.. ..-:>-:[denti.f:iep-{> ? . . $. . ; j 3 m

(:id e ...- :>. s t r i n g , %. ...- 1:. I d en .tr i .f :i e r - r i ! ;

i"

.# i ,$ i. @ .f
t,#) i::f+ 2 "'2 3.. i "" f" . "" i.,. "' ..-. li. I... ,. Lir...

,,? .<, ,:: pr-sr- c:,.f. :t f3.L .[-{:-&p"
. ..

.f. [..$:# <2 1 i r-j j
2" F) i ri * .j: C " '
1. %, n % 5; " w , :::. 'TL- IS^ ' 1:. 1 . j, T- , i . :$() $;

~ r - i ~ i . t + ('"..-irje l ' j i, i. %.--E3i:!5" <.!r-...:::.t.uig-j& y : \ . . ~ ~ () ee--).r-e;2de
p-j'-f3r : , E ,,.,, :[NVf-)Ij.- :[D;-l.!i:.1T: > > ;

pee... :::.c p; er: b:: e r - r- c-j-- 55 (ERW{::zR "r j ;
2.

i.. :i ?.e
3. j-)ri>t.f: ("':,,r.:%s"', t. I::.'" 3 53, :i f.iP f)) ;

.j, r 3 . t .g i "',,-i ne %...- 5::. ,.I<:' ti- .::. " .k, 12.L.. j, ne i3i.i jr: { :) j ~se?-.- :::.r ea;iderr~jf- { g ,".. k r r - i .: 3 -.: :;<?"
gL: M... Z.JE x P ..r 1 j ;

e@.-..:::.r;~e~~<ei:-p..c~i;..!z~fERj:~Cj& ..r:) a f!
3.

.' .& r.jAMF: ._ a w a i t %::parse
'r)/I:::* 6:' s &... s Membep.. -$~~rrc't:.ir:>n

,.., .i...bs:$J:JC;ING ... p:'{,,jNC:-rXf:)NS; .L. ...> lr F' -.
3.. s... . i.. i... . ..?1 : .,.,, .t:, 2 E Nt:?): t

::' g fi").? f i e 1;:: @ y c.?c;*r- d ! - <s;, f"

": .t: ... 't .i .-. 2."-, et .. ., ... r.. r t t-r t +& b i EY Wf::i t" d ci!C. E l z2 .C
p (..jt-. .h 5:;. 1 ' > ; f.'F: '" "'" '

i .t .. *tJ]-< i $5
3 ; i" r.~id'' ?

.*' j* E; E>
I 1 . r i ~ : i ~ . . t t " ><; i.::: 5 . i : ,) ; ~ < . LJ " 1

'"J!d.t. 931.A.t ,(/ k:a!,J'T'p[J'j-
~6 p .#/ / {;a 0 f::" .r f-;~: c:

a,".. . 1 ce5" 1. *'..:-. ." '9' .t ". L.>

31 "" 1?13i 5. '* , :aa .!# fi;[:'(::] :[i,-
8 1 t:t : > I.; -..[-. 3~ ,,en sr.vr' " , j { . ;;-) .:"- pj g;-, ,;

'6 'I..\ 1, ' I . ' f k; p kj I,,< 5 E
n p$,.. tJr:jr.a~~i;at-~efi - 'T ,]/ ~ z ~ : a j : ' i f j ~ : ~ ~ * q ., -, . .. a t~,iMt"lAEl..,. I:::
I > [:,I > j r"i $ 2 . 'f f ,{ f.;f:aL-fi:[N
" ';jS-.; 'I / ., i.:.' r" .

Y .j .f e .. t..jr4

1°C 3.f: f " ,f ,*' b:: f: F
4

'"t;?taj, .k,f:]n '; , .. / .. ./ p;W& :I '.f'f'j)'.f

I q a j a j , .tf:].f .f " , .. / .z ..' p:: ii] & :C'f'{:"i-F-
t r C: .< 2 ;...C" "-

,..>~?TI $3 E l T .S r r.. a:?t NU
" j, .[: I' .I :' / t;:: & 'T
* I p.L
2) L, t c > k j e " ') / / i.::S")"&QEE

Zi C' < ,/ $- -
3 (2 I S 7 >: .. .,.>l."

s 62 js" c-* c- &: .-it { y. @ 18 ! <,. ... , i' ,, p;f"f:i[;)t;ED[.Jj:;:E..
i s i-- f':*-j- 2, 1 . * # I @.s""% ..I r:~ " - ! 1

,/ ,,.* r. .,.. " i!::;C]f"j :i " .. ,.*t,..i)':l j.
" "!["t?'.JZ !' ,#'/ i"r"if"i2 i, .."I

? ;

e;ta'p,~? :::: $j.;%NT;
b r eaj.:: ;

r: i;r isp 9 : j' .B. C:t:>:! rsf-: .ti:. f

.k ,>;: +2.Tz'F-$ " .'F'.'" -
$ t..;tji..- C3t4 ;

.{- .E. .
2;:. ,.. *,,{ k $3 =: :; ~ : ~ ~ :] ~ ~ % j E ~ ;
$...
,.,$ y- g? 5 !< ;

ci;?s@ :i,C): ,J'.x. ~ ; e ~ f i i c c ~ , l i ~ n +/
-r ,..", [;: .t a I t en =. -.PI :i C33i.,..!:X'4 ;

~ ; t a . t ~ e x: C:r')CiHf'= \-..-.. :c

br-eaE:: :
..... c. a E;e 1 :[: f' ;*;. it. .,i fi 5) f- gz$>t:i sl- ./

cjz~ ...-:::.ReafJ]nipPf+z:(); n:~r.-..>.p-.ese.t: jie,it,i::F.ial;- f!.
I i. n e tz csl..~ n t .a. .r- ;
j- jewl i n e z: 1;

:" f
br-eat:: ;

r:::ac;e 12: i .~. j 'cjenki.j : iet;" ~iiPat~~;".~'". i-.-. : . 8 . j t. , it:: K !"I Et f"' ;:% C: t. @ g p ,E ./
!;:. .{; r- i n CJ [5 'j, e ::::: ' '>,% g::) ' s 7

i:: $13 "... :'.1;" er. et (j
..5

ta$: :er t z z J':[DEN'i":f)-IER;

.I'
i..F (~;~r-c~f:t(?:; .~,ri .ng,~:e.; , -w!sr-ijs[:$:l) x:~: Oj
.$-

t ~ k e n = "FKEZYW[:)RE);
f: $::ytype .- . " i ;

?.

.>'

.!.f (::her:f: f:<:jr. i::e.:,,:wal;..c;i ?sc:t i:ei/wsi..t:i lift@:; 3r.a 2
.k :- i.. . <..I t.3 xn'ted i n t o

; ,:> .&. r,,hf:+ .tr-ace . F i : i e
i f f {tt:,k%rt !zi: -[f~::E:'{{fij[:3f:;:I:jj zt2.: Cf-6er:rj.::S~rid,:i fne,q:i j,

$1 e 1 >
+$;ci;":j,nt-g < t p 7 ' '%siZ, t::p-.->.f',dp>:uirs+;,(j);

i .f (new:f . i r re) nekql ine r--

5;t * a t e E:: C:i]:jCrir ,..8 . 3 L ,::. ;
br aa l:: ;

c a 5s 'j, 5 : .:' #. :[i:j en t, j, .f: e1;" c:;k -. t F ' ., . -. 1 j c.1 p .- F. .., .., A- *.. ". 6 3 ,: ,*' + *::\. , r e i t:!t..~e~.. .iE./
4.6 .- , [s l p n .::) s,j~;.-ij-~i.

" ' - "3 f s :i 4-.r- 1; .Z: p ,..- :::.<:: e i5.
ir -. ' ... j.. ., i t a i::c ., ,

i.,,,.;!;;e I.<%: /%. xfi+;,eqe.- ser?.,'te./i.::r'tpIe:+;i'-;i' &tat~.ac$ey :$.' . f
.tof:e~? ::2 ' ' F : f ~ j ' f " E (; E ~ p
2;t a.t e =: S D [:] N [z ;
i:: p :>.t;" e g t (:I ;
ti r.' e a i.:: ;

c:ar;e .5.:f,i; ,:*. :[ri.teaey .;.tate/:daiit-i c!-$ayac.tep- (d i g i t) -w,f
j, .i ;a :i. !.* .= C i a ? u e .% j. .;- < c p ...- 3.i:: ad e (1 ' <,) n 5
i.ir.eab: ; *..

{-: .st !s e 1 & ; <?:. Ei-td...-;.-9.F %.., $-i 1 e .g.;.'

.k, {Z! i.:: (3 :7:: .T E; [;$I::: " z !$

i;;ta.te? ~2 Sc)(-3NE;
fi:.-, t. 5: ,> 3 t 1 . f

+:. , iz . .- . : / .% ". cri k. r- i rig i n i '1: i a :i. .E ./
E:: .!.. . ,.,.. ,,. r-. 2 f-6 {.;j i: fg:. :i b? y$ 4- -k ::I ::: i::; F.3 ..,., >. t:: ctcf < :i ;
b!;-eab: ;

f : a sj e 2. 8 ; .!' i",. [.:j rj .i:, e @ n c (2 I,,$ r., .f:. @ r. p g:; :j, ~3 C". z.3 L + 1.. :i n g #. .:/

.;.+a,ke = SQ'.f'E;
b f- Q a 1.:: ;

;;{ 5::. ky? 1, c,? 2 ;/ ,(t:Ij L.; iz-.. k, tz! ?. t a t .k:, pr $I? i. f::: kg at;' a c t, e i;.
c;t..rir.ig["len.l 32: ' \ < : I * Q

g $̂ ..-. :::y En et i :, *
.L. rc2kei i ::= '~~i.-~f i$~$'f"R:[&,jG;

I:.?reaf: 5
'.) ." c: a S F ? .I: C) :

'[i j-? e at,\ n .k:, ..!... -$. *
i~g...-::.j.-ef:-~t () a

net+], jf.re L1: 1 .
s t a t e 2- St.,f.JF;

ksr eak ;
i:jef:anl .t ::

Fr+ ,'. j, l7 +- .f (2 "3 i,,:-2. '.,* :p ep :::.3,.. i;'- i:rl;- 1: jZ p@pC'E:f:tF::'F:;*i:;*f::ffi ,) 1) z 9 e ti.) .. , i
.- "- t:$s... , ::.i"' psei.- r; ,.. : ,.-z.. E?Y-k-(3r-5~<F&i'TPd ..,,,,,, -1-1 2
t:) f" e a f:: ;

2.
:j: w f j i : i , e ;:sta.te 1::. SI)[>NE! *

/ ,%, -1- . . - .
.: .. rhi!3 f j , l c i i r i i l : :L i2~ i i2P: i? . 3 t a b l e i:3.i1 val:ii:j t:4-5arai:.tey- (:c:~j-~stant.;5, an t - d e f i n e s

.t:,kte meif i tspy +ctrlr:.tj,r:,tri.3 Q:r~:tlr. tf3g+ C F , ; : ~ ~
.I&" *2 .. .

<3j'-$ i:3y t c: j..i (.. :j, <. ijs i:: :j ": .[.....
r: 1 !...i... .$ t::: 1 ! i... ? c:: f !...~ !-.. y c: 1 1". i... i::: I j.." ! T t::: 1 i..,i"" 9 K: :x i.- i... 7 t:: :i i.,, i,,. j' .ii. jijt-l , * ,, , .-. .-. , .# I"' .[I Vl. ,., -.. .- -- , .-. 31 " , . ,T 'TF $ E'i ... ". F , Ckli.4 :i 'l-E 1 CWI.4 P I E , iXii..J f '."< , i::: :L: Lei... , i::: ;[L.L. , .J' ,I+ 1::3;3 , !-(.t .F , szk .F .g , c p- , +sj, ++.fa ... > ' ~ : : : ? : k ... i ,i::~i...i...~{:::fi i....,!::~i...i ..., I....IL.L.,C::~:~...~, [::XI ... ~..,r. .; .tt-.t ...?

[::: :f I.... 1 9 t:: :l i.". i". , t::: 1 1 i... 9 i::; :i I.... i 9 c: :i I.." !.- 9 c 1 t.-. 1." 7 t::: 1 i ,,.. i'." 5 r: :I I..+ I..-
.*. -..

c:!#.-! 1 7'": 9 i::: :i k.,. i... $ c:c!i."if"j 1 k. 9 c:: :I 1::) ,! c:: :i .f::l 4::; :i 1:) , t:; x i", i... :t k..i", /:SF 5 p ,* ! ' :: 3 : , $.#. f , Y 3

... " CI .- F'AF?EN,C1:ii.SAf?Ef.I,f2;ll-l ..., CIl ." i , CC-:CSPIMA,C:ft.l.-,f::~I)Cj"~,~lt..t.., i:e. j - , , . ,ii
C:K! 1 E . !:I::; I e ,! $::D 3: $3 , CI:) 1 G , C:E) f G , C:D I(; , Cj:) f G , C ' f j 1 5 , .i .z, .- q.cfy..3q43S,bs7 ,... .-,. 44.1

", . . K I ~ . ? ~ G , c'D:[G, ~:.:r:~!,..i:i, CSEEMI , ~ : f 3 ... t... , (::I !..I.... , c::EL~.. , c-..~L-L.. , ,<z , .* .. $3 , 23 , . . ? (4 = 7 .>.$. #... :1 .E/
C: 3: i...L.. . C: I D ? C: 1 D , C 3: D , f::: I I:> , t: I D , f:: f D , C: :i: D , .i' .K gt , , C" rj E::' jz , G .%. ,,/ r.f'- 4 ' f:! 'y , -.. r.!, [C:fD, C:%'U, (;:I D , C : i D CX D C::E 3 , /.!+ I-4 7 X ? iJ 4fi : I (1.. . 4 P l g l i j I I 0 +I
f;-: f 1:) ,) i::; 1 f"] r '[r '[1; -.I , ..., . , , C :I' 1) ,! C::: :L' 11 , C :j: D , i: :i I) i' .K f::* ? f:i 5 , T' I $2 , W * / 4 ... 3
~: l~ , i : : : : f :13 , f : : : :~ '~?~f : : f l .- L..,cI~...L.. ,~71_1. . ,C~L...I- , C I D , / .K X , 'r' , Z , C , i , 3 , ."" , ,,,- X- /
c: I i... k... 7 C:: 1 1::) , C; 1 1::) T (::: I I:? i::: :i T el: 1 1::) i:: I[j:) 9 C :l T j T . i' .&. , 2 , !:.I , c , crl e , .F , g *..I'
(:' '[r) C' !-) i.; .[[". I -. p -.. .. - . ,, . ~rff : f iSqCI.~jtf :- :X3:j ,CIDg / * j.2 P .j 4 1; , 1 , m , r i fez< %-/
[:: 1 1:) 9 c I 1::) tj c: I 12 3 t:: 1 1:) a) ti; 1 I.) ,$ [I; 3 v [I; 1 l::) c 1 1::) $ / .W. $3 , Cf , P" r: 5 , .!:. Li ?..I V W .E- / .." c 1 l3 , c 12 , fr: 1 1;) (:: 1 i i.". i2 1 i 1 i:: 1 i... i... C: ;/I 1.- k... t; 1 i.- I.". . .; .& .. 3: s ~ y T ~ .E, : , I ,"",r:je:l .!+i

1:. ;

/ .g .x. .r;. * .x. .#. tr. ..#. .@- .E. :& .g. .%. .x- .s<. .#. .g. .g. #. .P .x. .x- .E .#. .#. .%. .g. .:<- .K. .x. 3. .#. .$+ .sq. #. .#. .#. .#- .#. * (;- .a. .K.S .a. 3. x- .X. .:& .& .%. .E .% .# .E .x. .*.$.# .%. .)+ .$+ .#. .#. s. .z. + .%. :& * ,:
j.". NAME:,: - a F.. t.. .. __, :: Nea:.t

"j- .%f. p F * - .,. m e m b e r - .Ft..~?,i-j!:ti.ctn

(lj;,.,. 1 'y 1:::;. f f.ff:j -1- 1 a m t a].:: 5f.i .,,,,t: ; : He:.; "c

i i f .$ 3:. i."$ e c f) a r- a c: t pr y- e a {:j i s {:-> .[;, i.2 r) d ;> .::f: j, e , .k f- .> .- re..! r ,.. tt.t~-~i t h e char-ai:'tel;- t . y p e ,
f -' .. . +,:: 1, 5 j ; e I. e.t. uy ii t f-$ e pn slP,: ... , -.-.i: , ' .i 'z .$. E.? i: c::*c! $5 a

c: I.-$.,,~, r:: 3 a s

,/ . .gr ,&. ,I.'. ,j;-.$. ." ?? +. '.r. n ." !:?T 3.' Jb:. .. .E, 44. .ig.:j; .& .j+. Y. .#..$<. .g..#. .;<. 44. .$$. .W. .&. .v- +<..g. $. .E. .#. .$$. .M. #. .g. .K. .g. s. Q. .&.@.&. .# .#. .g(. .E..@ jq..g.%. %. .& .$$.g..x..x. .E .E.E .#. jq.#..# .E. x. ++ .x. .& #. Sf. 9 /

.. . f . g . .kr. ci ...r :-:. 1 ,,i .-Z- .e ,,,,, t:: : pairs~De.~+*iceii;
'-r j: F:'E : mei?it:j {.:?r;- .$ t.1 j-,~: .t i ~ 3 p . i

.p -. ' F: t.1 N C:: ''r 1 bj :; .,~rq:ir\s i>ay:se de.g:itr:@ t-jeclar.a'tiayj s.b,a.tejTtersts wf-!ey, the f:e~t;.wr:.:ly.~-)
p, a r-
~.~ifvlf....r:- x i ; ~nr.lcst.tiite?-ed, ftse ysar-sii-$9 i.; ci:i:irr.izir>t.iecj $ y the device abiec' t wk le i i
.i .. +. , :I<:; . jns::..t:ant,j.a-tr..eri arid :i.ri~:.elr.tec:i :in.tcs t h e :;.;ji.lit>al t a b l e ,

QL,j"i" ['?,I "T'
f' 3""' '"M -"' '' ."' '" VJ., P* . ' E.. i k:, 5< z None

i:" 1 ..,. vrg #{,: (N . . r i ;> i $ ' .-.. "
i I.." *#. t..+!-.. ,.;i::. ?; :

r,, , ,, - .. -.~ -- .f <.., 1 iy:.$@
i... r... r 8

.$ eca.f:

t:: E$!::. f+ (::i::Jjq ;
.$.j, p.?.. ,,:+ " ; ; .F .-. i..l, "%i::i %l.d Xcj Xc/'%,y:'\ ,:ac:le.--:::.codg

c i:>d e...- :::.i;; ode~s . b j. .t , SE'I"B :['1" :I y
tr~;.eaI: ;

i : - a ! s e f"'i3FF:
+ f : t r i n ' k f (.&p, " X d *." .?" j, <:j %cj xi::! 'j r? " ', c c2d e-- :::.c c:?d e

......
;-- r", ..I e..". ". -- . . .-
,...- r.. : - c . sde :a , t3x ty : I r :) ;

k::, r;.. e a 1.: ;
c a:;@ 6WA 'Y[:''N ;

.(" F::r y.' 2.n.k.f ' {fp, "x>d X1j.d Xi:; %d\.,ri9\ y:ctde--,>.r::.ade
......

{- ." j-*{j p .. ":. {; ",".~t. #- ,j K . . " . " k 3 i . k ,,.'<; 7 :=LIZ 2.i. ! .3 ;
..., ,".. ../" i,;

b" ... ,jp e2j.i ;

i- rii:; C=S W f i f "f [:IFF ;
f : p r - . i r j t . f : < . f : g > 5 "Xrj %:i~i %d %qj',,~-i" C c>c:! E?

i..; p,r- ,."+. r> .s ..a- -..... .- ... c.. o t"ie $5 , $ i .t , r: ,:::. ;:AT '; e.> .i. 3 > ;
t: !

$ f t..: ."< 3.f :g " 2 . .#

c:: i3r-j e , i::,<:j e..- :r.c: ~ 3 d c.:?~. . -.- :>.c i:><j { ~ + 5 . ..'\: b- j. ni.3 I? ;
g-6 p-. i 3 ,z 1 . "

\ i
&'. r t". ,..it:. 5

i"'@j & :["f' : c: a ':;& ,,
, i-‘.

., - C c:$ y; fpY:in-k.$(.j: . .$ ""V
F" 9 fi ,$ r:: c:! ci e '::- , c.. i..irl e C; . c:q:> c:: ~ 3 d

e , C: ~3i::; e..... :::.cad e!; . :t .t <;pc ~5 .l ;
"-4 key" i.: ;

..............
0 I <I 3 .s:.e i..;::j i Hi::!BE:i :

j?L&(dx \ . . .f:pl;-int.i:{.fi:j, ;*%c:j %d y , t i ' r - " .c: ", r , !.- "-.- c:tde-- 1:-C: i:>c:i E
i

!3 , i:3nr.c.-l<je I- -- “- ~:!::~~:j ::.c {:3dpg i : 2 ~ j $ r e ! B ! 3 i: ~ 3 f j e.-- :::.(:i~<:je5 .. f3 i % ;I SE'J"B :f T' ? g
...... d" k: " . t v *.c c:t .. 5

t cas;e [::faf:]:
{,!' i:::g:jmmar:cj .filei;; ay-e c;t{-:it;..e{:j i n t -g~ t.i~@r;.. 'el i C-~~'EC::'~~"~T'V

s.ki;-i_gzy (cf f i&. f i le, dire . ; : -&,rs r -~) ;
) ;: ,* .. i3 g:~ 1:; e?f-; <:j " r: jrji:j ' I er"5sicsj-j .for. c:ominar-fid .i'i l

fj.k i;- E:: 3 t (c: ffi<;:i .f: :i, I g? , i:: c:*cj+? :::.c: i.-:,cj e . .f j. 1 pi-1) ;
i.f (i ; i ; -$3 :-. .fcsric:in(s-kr-c--a.ir r- %... (c m d . f i i c , Cp1DEX.j") ,

v);" i n-k cyhay*. ii-lj:

c:A I.,, L, J NG F' $! f.! "" "' '' ' ""
.-I .AL F !..JN5 :: i n a .i. r :

E .fa

e>; i t (.....2 13 1

2.3r.eai::;
def a!.!] t:

ti y- 6 .-$ ii ' 2 : q

