
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Techniques for the Integration of

Existing Tools

James Kiper
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/69

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1988-003

Techniques for the Integration of Existing Tools
James D. Kiper

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Techniques f o r t h e In t eg ra t i on of Ex i s t i ng Tool s

James D. K i per
Systems Analysis Department

Miami Uni ve r s i t y
Oxford, Ohio 45056

Working Paper #88-003

S I f m A W Y

The puqose of this paper is to explain and demonstrate the advantages of

tool integration and the reuse of tools. Several techniques for the

integration of exlsting tools are presented and discussed. These techniwes

include the use of a monitor, simlated incremental operation, sjmtax padding,

view extraction, and 03tput distribution. The advantages of the use of these

methods of tool intregation are illustrated by their use in integrating an

existing compiler and on-line debugger. The commands that are produced by

this synergisln have increased both the user friendliness of the tools and "ihe

power of the resultant camriands,

Key words :

Integration, software tools, incremental operation, techniques of inte-

gration, saftware development, software environment

IbTRBDLI C"P"PQlrN

The primary o b j e c t i v e f o r the r e s e a r c h desc r ibed i n t h i s paper i s t o

iiriprove t h e q u a l i t y of e x i s t i n g sof tware t o o l s by t h e i r i n t e g r a t i o n i n t o a

so f tware envi romient . Tools a r e i n t e g r a t e d When they c o m u n i c a t e and s h a r e

wi th each o t h e r (o f t e n through a comon p r o j e c t i n f o m a t i o n r e p o s i t o r y) , By

be ing more cognizant of t h e o v e r a l l purposes of t h e p r o j e c t development envi -

ronment and be ing aware of t h e presecce of o t h e r t o o l s , an i n t e g r a t e d t o o l can

more e f f e c t i v e l y a i d i n t h e development p r o c e s s . The s e t of t o o l s f o r an

e n v i r ~ m e n t , when i n t e g r a t e d , become a tern r a t h e r than a group of "'self-

cen te red i n d i v i d u a l s " . This t o o l i n t e g r a t i ~ n concept has been a theme of =any

r e c e n t p r o g r a m i n g envi rom,ents [4,8,12,14,18,26] .

Benefits of Twl ktegration

The conceptua l b e n e f i t s of t o o l i n t e g r a t i o n a r e d u a l . F i r s t , t o o l s i n

coope ra t ion have a s y n e r g i s t i c e f f e c t which i s g r e a t e r than any s i n g l e t o o l

could ach ieve a lone . ading much of t h e d u p l i c a t i o n of e f f o r t (a s i n

r epea t ed p a r s i n g and unpars ing of d a t a) , coope ra t ive t o o l s a r e a b l e t o

ach ieve a g r e a t e r e f f i c i e n c y . (In t h e contemporary t ime of r e l a t i v e l y in-

expe~sive hardware, efficiency Kay sew to be unimpor tan t , except as i t

i n f l u e n c e s the response t i m e to t h e user. The optinization 3f t h e u s e r ' s

t i m e i s a wcrthy goal.) Ic addkeioc ts add& e f f i c i e n c y , car.bination com-

rr,anJs, whi~S are mere pcwerfill Char, single ecrrs.sn5s to ind iv i5ca . l L c o i s , can

be deve loped . (Exa6;:es of such cooperation and the ~ c s s b ' b L e ca~r.zinc?s will

be e ~ ~ u n e r a t e d In hater secti~ns.)

The second conceptua l advantage of i n t e g r a t e d t o o l s i s an increased

level of u s e r f r i e n d l i n e s s . This i s n o t a b l y demonstrated i n 3 cornon u s e r

i n t e r f a c e . By p re sen t ing a unifom. syn tax t o the u s e r for a l l t o o l s and a

consistent interface within a tool, idiosmcratic differences among tools

and pernicious modes within a tool can be avoided. The denouement is the

user's concentration of hisiher attention upon the project information.

Ultimately the user is no longer aware of the tools, but can focus on the

project information.

Zntegratisra, of E ~ t h g TmLs

Having established the advantages of the integration of tools, we now

proceed to consideration of the integration of existing tools into a soft-

ware enviroment. Such an integration has, of course, all the advantages of

integrated tools, i.e, more powerful comands and increased user friendli-

ness. The use of existing tools in such a cooperative environment has addi-

tional advantages, not the least of which are the economic considerations.

Creating, i.e. designing and coding, a new software tool can be an expensive

operation in tenns of computer and human resources, The cost of integration

of existing tools lies in providing the appropriate view of the infomtion

base to the tool and placing the results of the tool back into the correct

context of the information base. Both of these can be accomplished rela-

tively ineqensively as has been demonstrated by means of an iwlenentation.

(This integration of an existing compiler and a symbclic debugger into a

software enviroment will be discussed later in the section on irrrplementa-

t i o n . 1

A v l t a l issue is the user's level of confidence in a tool. Although a

new tool is a technological advancement, initlaily it may not be perceived

as such by the user. Newly produced tools often evolve through several ver-

sions in which improvements are made and serious errors are corrected. In

addition, user productivity nomally declines until the idiosyncraties of a

new tool are learned; malogous idiosyncracies in an older tool have been

mastered. Furthermore, a sophisticated tool often has a detailed set of

commands and capabilities that are best learned through experience.

The past decade has witnessed a great amount of work in the research and

development of software tools. Gonternpofary tools are quickly outdated by

this progression. Existing tools are expanded in power and increased in

usability, A software enviroment which is capable of integrating tools as

they develop and prove their reliability can sustain its utility. Host

envfroments include a great variety of tools. If these tools can be

replaced on an individual basis while retaining the remaining tools, the

integrity of the e n v i r c m n t is mintained. Such an evolution of the set of

tools in the environment" tool kit reaffirms the user's faith in the

reliability and usability of the overall system. A n enviroment which can

incorporate existing tools has increased flexibility and adaptability. It

is not locked into the syntax, structure, or capabilities of the current set

of tools. Purthemore, the potential exists to develop co ds for these

existing tools that are even nore sophisticated than those performed by more

techriologically advanced tools.

Related Work

The value of integrating tools has been w i d e l y recognize2 in the computer

science and software engineering cornunities over the past decade, Nany

tool collections are now designed with a view toward integration. The most

successful. of these are the language sensitive editors which are effectively

a very tight integration of an editor and a translator (compiler).

fn addition to this work, there is an increasing awareness of the need to

integrate existing tools. At the University of Illinois, the Illinois Soft-

ware Engineering Progrm has proposed an open systems architecture whose

goal is to make the addition of new tools simple 191. This is to be accom-

plished through a "tool bus" or "software backplane." This group proposes

the development of as many interco nication protocols as necessary, rather

than forcing all tool comunication to occur through a comon protocol. The

"partial sort morphisms'>f tthir work are the view extractor and output

distributor of this research. (These terns, view extractor and output dis-

tributor, will be discussed subsequently.)

Work at the Software Productivity Consortium has centered on the develop-

ment of a frmework into which new and existing tools can be integrated

[I, 151. This framework hinges on a project library, a session coordinator,

and a "'harness." The session coordinator is responsible for dyrramically

composing tools as requested by the user, orchestrating the execution of

these tools, and assuring that the data needed by tools are available. The

project library is a collection of technical and project management data and

relationships among this data. A "harness"is a piece of software which

mediates the differences in the data requirements of the tool and those of

the data base. The research described in this paper has detem,ined an anal-

ogous division of labor

h io the r approach to the problem of tool i n t eg ra t io r i was taken by Chalfan

at Boeing 12, 31. In this work, information about the relationships aniong

various tools was incorporated in the m l e base of an expert system. Given

a designed output, this expert system was designed k o check for the inputs

which would produce that output. If those inputs were present, that tool

was invoked, If those inputs were not present, the expert system's r u b s

are evaluated to determine which tools (if any) could be invoked to create

those inputs. (The recursive nature of this approach easily can be seen.)

The significance of this work is in the capturing of the relationships amang

tools in %he pale base for an expert system. This technique worked well in

the given application area (design of aerospace vehicles) because the tools

involved generally produced simple, numeric data rather than the highly

structured data typical in software development environments,

These ideas have begun to appear to a limited extent in comerically

available software. A prime example of this software is the Language

Sensitive Editor developed by Digital Equipment Corporation for its Vax

family of cofnputers [223 . This product works with all the progr

languages for which DEC furnishes Vax compilers. Thus, existing compilers

can be integrated with an editor. (The implementation of this tool is not

clear from the user manual. The syntactic knowledge about these languages

seems to have been coded into this tool. However, it is clearly possible to

invoke the compiler from inside the tool and to have the results of the

compile available to the editor.)

TECHhTQUES FOR IhTEGRAmON

This section will describe some tecbiq~es which have proven useful in the

task of integrating existing tools. The topic of degrees and categories of

tool integration are discussed in a companion paper I11I. Figure I ilbus-

tsates the relationship anong the primary cowonents of such an integration.

The Use of a Co

The general purpose of the monitor (alias user interface) is to coordi-

n a t e t h e v a r i o u s i n t e r a c t i o n s , i a e . t o o l - - t o o l , t o o l - - i n f o m t i o n base ,

u s e r - - t o o l , and u s e r - - i n f o m a t i o n base . The monitor can provide an impor-

t a n t i n t e r f a c e t o t h e t o o l s f o r t h e u s e r . S ince a l l i n t e r a c t i o n s between

t h e u s e r and t o o l s occur through t h e moni tor , it can p rov ide a more u n i f o m

i n t e r f a c e by p rov id ing a eomon s e t of pronrrpts and a c o n s i s t e n t comtand

s y n t a x f o r a l l t o o l s . The monitor can t r a p , p roces s , and r e d i r e c t t h e i n p u t

and o u t p u t to / f rom t h e t o o l s . (This i s analogous t o t h e " se s s ion con t ro l -

ler" i n t h e work a t t h e Software P r o d u c t i v i t y Consortiurn, SPC f1,153.)

A s t h e c o n t r o l l e r of t h e t o o l s , t h e moni tor can m n i p u l a t e t h e t o o l s t o

produce a s y n e r g i s t i c e f f e c t which is g r e a t e r t han t h a t of any s i n g l e t o o l .

For example, t h e monitor can coord ina t e an e d i t o r and debugger s o t h a t &en

t h e debugger s t o p s a t a breakpoin t , t h e e d i t o r ' s c u r s o r i s p o s i t i o n e d i n t h e

p r o j e c t in format ion a t t h e corresponding s t a t e m e n t ,

Tool as Child Process

The advantages of a common monitor o r u s e r i n t e r f a c e t o t h e s e t of t o o l s

is magnif ied i f t h e t o o l s can func t ion a s a c h i l d p roces s of t h e monitor .

The p o t e n t i a l t o o p e r a t e In such a manner i s dependent upon t h e ope ra t ing

e n v i r o m e n t i n which t h e irrtplementation t a k e s p l a c e . Tf t h e o p e r a t i n g sys-

t e m allows concurren t p roces ses , and i f the t o o l t o be i n t e g r a t e d uses t h e

facilities provided by t h a t ope ra t ing system, then t h a t t o o l may be able t o

f u n c t i o n a s a c h i l d process of the monitor . T h i s a l lows the monitor t o

e x e r c i s e a greater a rount of c o n t r o l and coord ina t ion over the va r ious t o o l s

"Fbae Use of Inh.ut P w e s

The monitor can convenient ly e x e r c i s e c o n t r o l over c h i l d p roces s t o o l s by

t h e e f f e c t i v e u s e of t imes a t which t h e t o o l s pause for- u s e r i n p u t . (It i s

possible for the monitor to obtain control from the tool at arbitrary points

during the tool's execution. This would require modification to the too19s

code. Otrr purpose here is to avoid such modification because of the inher-

ent complexity of that task in general.?

By using the times when a too1 pauses for user input, the monitor can

regain control from the tool. Having obtained control, the monitor can in-

voke other tools, retrieve information from the information base, provide an

improved prompt for the user, etc. Furthemore, the monitor can simulate

the incremental operation of a tool by means of this technique. By switch-

ing control from tool to tool and storing each tool" state infomation, the

monitor can present the impression to the user that the tools are operating

incrementally.

Idhen the tool pauses for user input, the monitor can usurp control and

save the state of the tool in the project infomtion base. Then, before

letting the first tool resume by providing input to it, the monitor can ini-

tiate another tool, obtain data from the infomation base, analyze project

infomation produced thus Ear, etc. This process simlates incremental tool

operation [5,6,163 by providing information from mdltiple sources within a

small interval of time,

The monitor can ir%coqorate the information base in tool processing.

Relevant project infomation @an be retrieved to present to the user or to

modify or enhance tool comnnds. For exzaple, the project infomation at

the code level can be queried using a database tool to deternine the loca-

tions of all statements that modify the variable "x". This can then be used

to send several comands to another tool, the debugger, which sets break-

points at each of these locations. This task is beyond the scope of either

tool working individually without user intervention.

The Use of a Ro$ct ~omma°tioa R e ~ s i t a r ~ r

Storing infomtion in, and retrieving it from, the infomation base is a

primary task of a software environment. The project infom,ation is the most

iqortant inanimate resource that a corporation or an organization has. A

database of some variety is necessary to fulfill the storage and retrieval

needs. An existing database can provide the requisite functionality if it

allows project infomation to be stored and retrieved as needed. The query

mechanism of many existing database system provides a facility for answering

the unanticipated type of question that often arises in project development.

A database mnagement system (DBMS) is designed to handle a large volme of

information such as that produced by project members and by tools.

In descriptions of the integration work at the SPC, the project

infomation repository is referred to as the "project library" [1,15]. In

the framework used in the related work at Illinois, a database of project

tion is not a primary conrpoxent. They recognized the need that most

software development projects have for a database by including it as a tool

f 93 . Chalfan" work at Boeing introduces the possibility of storing tool

relationship data in an i n f o m a t i o n base 1 2 , 3 5 . (This work does not center

on software development. Conseque~tly, storage o f project inf~m~aticn is

not dlscassed.)

If such a project infomation base does not exist, the first step in the

integration of existing tools is to develop one. The ability to gather all

the project infomation into a central location has not only the obvious

benefits to project management but also aids in the integration of tools.

These integration advantages are further explicated in subsequent sections,

lZIe View ExWactor and Output Bktriibkor

The task of overcoming syntactic dissonance can be accomplished by means

of a view extractor in combination with an output distributor. A view

extractor is a generic system component which extracts the necessary infor-

mation from the info tion base, changes the syntax to that expected by the

tool, and then submits that data to the tool as input. A corresponding com-

ponent, the output distributor, performs the reverse operation. The results

of the tool are distributed to the spot in the infomtion base that best

reflects the context of those results. These results are more meaningful

and more easily understood in context. (See Figure 2.)

These two components enable the existing tools to be incorporated into a

system with no internal. changes to the tools. A view extractor and output

distributor are written to provide the correct view for the tool. and to dis-

tribute tool results. The task of building these two cawonents is much

simpler, in general, than constructing a new tool. This is especially true

for sophisticated tools to be used for critical operations. Since the tool

is unchanged, its reliability is not subject to question. The constr~tetion

of the view extractor and the output distributor is nade especially easy if

the infomatian base provides comands or functions to traverse and query

the pr~ject infornation, Two such components are necessary for each tool

which is to be integrated since the view extractor and output distributor

must be aware of the syntax requirenents of the tools and the structure of

the infomation base. (The developinent of a generator for the view extrac-

tor and/or the output distributor is theoretically feasible, and is a

possible area of future research and development.)

The need for the view extractor and output distributor is echoed in the

SPC integration work in their discussion of a "harness" for integrating

existing tools f1,151. At the Illinois Software Engineering Prograac, these

conversion tools are given the appellation "sort monphisms" 143.

Trapphg sf Outmt Fn the Lnformatioa Base

The trapping of output of a tool to redirect to another location is

necessary if existing tools are to cooperate in an enviroment. The results

need to be stored in the information base rather than in an external file in

order that other tools may use the data produced. in a conrplementary sense,

the tool must allow the monitor and, indirectly, the user to eontrof the

tool and to integrate it into the system without rewriting or modifying the

tool in any manner. (The Unix operating system provides the pipe mechanism

and input/output redirection f 7 , Z l . I which can be used to accomplish these

tasks. 1

Since syntactic dissonance, i.e. incoapatibility in the syntax of tools,

is one of the major hurtles to cross in integrating existing tools, syntax

padding to achieve syntactic hamony is a vital technigue. (S y x t a c t i c

disscnance is further explicated and illustrated in ill!.) This padding

occurs in two methods. Local s y n t a x , i.e. context free syrrtax, can be pro-

vided by "action routines." These action routines are procedural components

which are associated with local chunks of logically related information, and

are associated with a particular tool IE93. Hence, the knowledge of the

tool" syntactic reguirenents and an understanding of the structure of the

project infomation is available to these rout' ines .

Syntax additions and corrections of a more global nature can be made by

examining the remainder of the project infomation to find the needed refer-

ents. This is obviously not the task of a local routine, but needs to be

accomplished by a more global agent.

ADVANTAGES OF TPCS APPROACH TO INTEGRATION

The integration of existing tools into a software enviroment by the tech-

niques herein described has been depicted as ergonomic, effective, and

economic. The term "user-friendly" has been used so often it has become

almost meaningless. To be more specific, the primary benefits which are

ergonomic , i.e. user-friendly, can be summarized in the statement:

The user% focus of attention rem on the project

information rather than on the tools or other system

comprnnents.

To be more precise, these benefits include the following:

o a more uniform tool interface,

o a u t o m t l c invocation of some toois,

t o o l operation and cooperation in the background,

o more incremental tool operation,

o presence of a monitor to smooth (or obscure? the t o o l transitions,

o padding of syntax to remove syntactic details from the user, and

o improved comiand syntax.

Each of these can enhance the user's productivity by mintaining his/her

concentration on the problem being solved or the system component being

designed, while removing non-productive distractions and details.

The effectiveness of the integration of existing tools is demonstrated by

the increase in the power of the tool comands that are possible by means of

tool cooperation and tool monitoring. (Specific and detailed exmples of

these enhanced tool co nds are explicated in the following section.) This

increased effectiveness is gained by the following

o the ability of the monitor to capkare run-time status,

s the use of the atonitor in conjunction with the query mechanism of

the project infomation base,

o the use of the monitor as a comon inkerface to the tools,

o the coordination by the monitor of the application of tools on the

project information base, and

o the ergonomic (user-friendly) presentation of the results of the

tools.

]Not only can the power of simple tools be miltiplied, it can often surpass

that of more sophisticated and complicated system.

All of these advantages would be rendered impotent if the price, in t e rm of

design and coding time and complexity, was much greater than for the creation

of new, mere integrated tools. The concepts and techniques introduced in this

paper are an attempt to skmplify this task of integration. Their success has

been demonstrated in an accompanying iwlementatlon, i.e. the integration of

an existing compiler and sgmbolic debugger. Although accurate data is gener-

ally not available, some approximate size and development time data from

developers has substantiated the intuitive hypothesis that integration of

existing tools involves less work than development of new tools with similar

power, Qne is forced to the conclusion that time and effort spent In the

design and implementation of new tools which are not conceptually different or

more powerful than existing tools is an ineffectual use of these resources.

These resources would be more productively applied to the integration of the

existing tools in a way that increases their friendliness and power.

AN ImEGRAT1ON OF EXZSTING TOOLS

The power of the integration of existing tools in general, and the afore-

mentioned techniques in particular, is illustrated best by a discussion of an

actual integration. The tools chosen for integration were the standard C com-

piler and the DBX on-line debugger provided by Unix. The TRIM [13,f7] soft-

ware envlroaaent provided the project information base and the monitor. (See

Figure 3)

In such a system, the number of possible, useful commnds is virtually

unbounded. The compiler and the debugger subsystems are similarly very

fertile. The ability to modify commands by means of data obtained from the

project infomation base adds another factor to the increase in comiands.

Obviously, all the possible co ds cannot be iwlemented. A set of "primi-

nds was chosen that could provide an adequate base for mnipulating

the compiler and the debugger while demonstrating the feasibility of the imple-

mentation techniques, and the power and sser friendliness of the resultant

integration. The discussion of this subset of primitive comands which fol-

lows is organized by purpose - compiling, interface checking, debugging, and

code instrumenting. A set of "composite" comands is then discussed. These

comiands are a composition of queries to recover infomation from the project

infomation with tool commands modified by this inferntion.

The basic compiler co nd is one which invokes the view extractor to

obtain a complete program from the project infomation base, adds the

necessary syntactic infcmtion, and sends the resulting file to the

compiler. The program is stored in the information base as a tree. The

information store at each node of the tree includes much more than program

instructions. Documentation and various descriptive attributes are also

stored at each node.

Upon completion of the compilation, the output distributor places the

errors back into the tree with the statement at which the error occurred. A

comDand is provided to position the cursor at the first error in the pso-

gram. (Since "first" is somewhat mbiguous with respect to a tree, this is

interpreted to mean the error which corresponds to the statement with the

lowest line number in the extracted file.) Subsequent application of this

d will move the cursor to the position of the next error.

The compile co nd at the procedure level tests the syntax of a particu-

lar procedure. Since the C com~iler which is being used without chage is

not incremental, compiling an entire progrvn repeatedly can be quite time

consuming. By allowing the syntax of one procedure to be checked, response

time can be shortened. To permit the testing of one procedure at a time,

the user is prompted for a driving routine. This serves as the main program

for this procedure, and is cornpiled with the procedure which is produced by

Lhe view extractor. The 'Tfnd first error" command used after compiling a

single procedure causes the cursor to be positioned at the location of the

first error in that procedure.

The C compiler can also be used to check the syntax of an individual

statement. A view extractor automatically composes a simple main program

which includes this statement and all other definitions active in the scope

of Lhat statement. (This is, of course, more definitions than are needed.

b%en a separate lexical analyzer becomes available, it could be used to

determine the presence of variables, procedure or function calls, or other

identifiers. The list of definitions to be included could then be

efficiently reduced to an optimal number.)

Interface checking is the process of detem.ining if all procedure calls

are consistent with their definitions. fn C this includes deternining that

the type of actual parameters and formal parmeters is compatible. This

check cannot, by nature of typing in the C 1161 language, be very contplete.

Coercion of types is permitted and often used. (This is a feature of this

language which adds flexibility, but whose misuse and over use produces ab-

stmse code.) This technique is demonstrated in the context of C although

it would be more useful in a more strongly typed language like Pascal or Ada.

The iwlementation technique is for a view extractor to collect all the code

that involves the definition or use of a procedure, This includes the

procedure n m e , the formal parmeter list, the declaration of the types of

these parameters, and a simple procedure body Lhat contains only procedure

calls and the definitions of the actual parmeters of this call.

When applied at the procedure level, the same operation is perEomaed on

all code in the subtree rooted at that procedure. By submitting these prs-

eed~re calls and definitions to the compiler, any mismatches not allowed in

G are detected. An c~tput distributor can then convey this infornation to

the user in the most effective manner.

The method of integrating the DBX debugger permits all the co

that tool to be used. Other capabilities and improved comand syntax adds

more powerful comands and increased user friendliness for all co

addition to these improvements and additions, ail the original comands are

permitted in their previous syntax.

The most used commands of the debugger are:

o Set breakpoint,

o Print the value of a variable,

o Execute the next statement (i . e . step), and

o Change the value of a variable.

Various versions of these important co ds are provided by this integra-

tion whose syntax and usage is adapted to make them more palatable to the

user. Each of these co ds, when appropriate, can be applied with

different results at several levels--at the statement level, the control

structure level, and the procedural level.

A breakpoint can be set at a specific statement in the program by posi-

tioning the cursor at that statement in the tree of project information,

then issuing a simple co d . (A breakpoint is a notation in the program

to cause the execution to tenrporarily pause at that precise point in the

progran.1 The simple com'and is generie in that no identification of the

location of the statement has to be made. This infom-ation is taken from

the eontext of the user's focus of attention (as indicated by the position

of the cursor] by a view extractor.

k particularly practical and prevalent debugging operation is the setting

of a breakpoint just prior to, inside, and im,ediately after a control

s t r u c t u r e , This is a~compliakod i n Ghia implementation v i a a s i n g l e c o -
The c o n t r o l s t r u c t u r e used is t h a t one which i m e d i a t e l y e n c l o s e s t h e s t a t e -

ment a t t h e cu r r en t c u r s o r p o s i t i o n . A s i m i l a r f i a t s e t s b reakpo in t s i n t h e

procedure i n which t h e c u r s o r l i e s .

The p r i n t i n g of t h e va lue of a v a r i a b l e l o g i c a l l y makes sense a t t h e

s t a t emen t l e v e l only. The u s e r p o s i t i o n s h i s / h e r c u r s o r a t t h e d e c l a r a t i o n

of t h e v a r i a b l e i n q u e s t i o n . A view e x t r a c t o r can e x t r a c t t h e name of t h e

v a r i a b l e and can use t h i s t o compose the cornand t h a t is neces sa ry f o r t h e

DBX debugger. The u s e r i s p ro t ec t ed from t h e e r r o r prone t a s k of c o r r e c t l y

t yp ing t h e name of t h e v a r i a b l e i n t h e p r e c i s e cornnand syn tax . An o u t p u t

d i s t r i b u t o r is r e s p o n s i b l e f o r ob ta in ing o u t p u t from t h e debugger t o o l and

p r e s e n t i n g it t o t h e u s e r .

A primary c a p a b i l i t y of any debugger is t o c o n t r o l t h e execu t ion of a

program by s t epp ing through t h e program one s t a t emen t (o r a few s t a t e m e n t s)

a t a t i m e . Stepping a t t h e s ta tement l e v e l i s provided by DBX. The moni tor

can a d j u s t t h i s s t e p s i z e by i s s u i n g a sequence of "s tep" comands b e f o r e

r e t u r n i n g c o n t r o l t o t h e u s e r . A more u s e f u l technique i s t o a l low t h e u s e r

t o seep over an e n t i r e c o n t r o l s t r u c t u r e . Thus, the monitor can s t e p o v e r a

"while ," " r epea t , " o r "for" loop t o avoid t h e monotony of s t epp ing through a

l a r g e number of i t e r a t i o n s of t h e loop.

The a b i l i t y t o change t h e va lue of a v a r i a b l e i s s i m i l a r t o t h e p r o c e s s

of p r i n t i n g t h e value of a v a r i a b i e . The user" c u r s o r Fs p o s i t i o n e d a t t h e

d e c l a r a t i o n of t h e v a r i a b l e . The new va lue i s e n t e r e d by t h e u s e r i n re-

sponse t o a prompt from t h e u s e r , and i s used by t h e monitor a long w i t h t h e

name of t h e v a r i a b l e t o issue t h e p r e c i s e DBX cornand.

As a psrt of the testing and debugging process, it is useful to hn~t~91m~C

the code. This is the process of monitoring the execution of a portion of a

progrm by furnishing the user with data (feedback) about the state of the

execution environment. At the minimdm, this data is a dynamic report about

which procedure, statement, or control. structure is currently being executed.

Despite this instrumentation being part of the debugging process, its im-

plementation was achieved without using any symbolic debugger. In response

nd to instr~ment an individual statement, the monitor inserts an

identifying print statement immediately before and after that statextent in the

program before submission to the compiler. At the control structure level,

the result is the insertion of the appropriate print statenents be- fore,

inside, and after that structure. The procedure level is handled in a

parallel manner. Idhen the program is run, either alone or by the debugger,

these print statements help the user to monitor the progress of the execution

of the program. This additional data may help identify the possible areas

of error to be further explored with the symbolic debugger.

Composite Go

The cowosite c s m n d s are those whose implementation is not explicitly

supported by either the C compiler or the DBX debugger, but require interven-

tion and processing in a significant manner by the nonitor and a view exlrac-

tor. (This categorization is subjective and is used only as an organiza-

tional technique to present the comands.2 The first group cf composite

eomands to be discussed can be characterized further as static. Once the

command is famed, there is no additional processing necessary from the

monitor during execution of the comar.d. The general form of these commands

is "'Execute the tool command an the portion or portions of the infomation

base which s a t i s f y t h e que ry . 'YThe monitor d e t e r n i n e s t h e l o c a t i o n of t h e

one o r more l o g i c a l p o r t i o n s of t h e t r e e which s a t i s f i e s t h e query . T h i s

d a t a t hen i s packaged by a view e x t r a c t o r t o c o q o s e t h e n e c e s s a r y t o o l

comands. ?'be u sab le q u e r i e s , a t t h i s p o i n t i n t h e development of t h e sys -

tem, have t o be a n t i c i p a t e d and t h e i r s o l u t i o n d e t e m i n e d when t h e system i s

compiled. (With t h e i n t r o d u c t i o n i n t o t h e system of a more adequate d a t a -

base management system wi th a s o p h i s t i c a t e d query language, t h i s f a c i l i t y

can be made much more f l e x i b l e and, hence, more powerful .)

Some examples of t h e s e commands a r e t h e fo l lowing:

o Gorrcpile a l l procedures which c o n t a i n a r e f e rence t o t h e v a r i a b l e 'kx".

o Check t h e i n t e r f a c e s of a l l p rocedures which were modi f ied s i n c e

February 1.

o S e t a breakpoin t a t a l l s t a t emen t s which r e f e r e n c e t h e v a r i a b l e

'*sum" .

o S e t a breakpoin t a t a l l procedures which were modif ied s i n c e

January 1.5.

o P r i n t t h e va lue of a l l v a r i a b l e s used wi th in t h e c u r r e n t c o n t r o l

s k m c t u r e .

D,mamic composite cornbands a r e t hose i n which t h e r e i s interaetian between

the moni tor and t h e t o o l while the comf.and Is being executed . These comands

g e n e r a l l y have the fomL "Execute the command while t h e d y m a ~ i c c o n d i t i o n i s

t rue." Examples of t h e s e dynaw,ic, composite commands fo l low:

o Cowile the current program after each 100 editor e

o Compile the program when editing is finished on procedure "input

scores".

o Step to the next statement while x > 0.

o Stop when a procedure is called which modified since February 15.

In sumbary, these comands are a small sample of the total possible. This

subset does demonstrate the potential gain in power and user friendliness

obtained from an application of these concepts and techiques.

CIBKCLUSIONS

This paper has presented some techniques for the integration of

tools. The need for such integration is two-fold. First, integration of

tools is a paradigm which has proven quite effective in improving user

friendliness and the power of tools. Secondly, the integration of

tools can bring the power of integration to set of tools which have been

proven reliable, with which users are comfortable, and in which there has

already been a large financial investment.

The effectiveness of these techniqaes has baen demonstrated in the integra-

tion of an existing compiler and debugger. The comands discussed in this

paper are new comands which neither tool was able to provide by itself. fn

general, the icteracifons with the user for these new tools are mare under-

standable and user friendly than the eomands and messages of the original

tools.

in the final analysis, such integration has been defnonstrzted to be a c o s t

e f f e c t i v e way of Improving the quality of the tools currently available.

REFERENCES

1. "Build 1 Demonstrates Harness Technology for Off-the-shelf Tools." The

Software Productivity Consortium Quarterly, Vol.2, No. 1, January 1988,

2, Chalfan, Kathryn H . "A Generic Tool f o r Integrating Software

Components." The Boeing Com;iany, 1987,

3. Chalfan, Kathryrt K. "A Knowledge System that Integrates Homogeneous

Software for a Design Application." The A1 Hagazine, Sumer 1986.

4 . Donzeau-Gouge, V., G. Nuet, 6 . Kahn, and B. Lang. "Trogr ing Environ-

ments Based on Structured Editors: the Hentor Experience." Inria, Nay

1980.

5. Feiler, P. W. and R. Hedina-Hafa. "An Incremental Pragr ing Environ-

ment." Department of Cowuter Science, Camegie-Bellon University,

Pittsburgh, PA, April 1980.

5 . Fritzson, P. "Preliminary Experience from the DICE System a Distributed

Incremental Compiling Enviroment." Proceedings of the ACE SIGSOFT/

S I G P M Software Engineering Syxrposim on Practical Software Development

Envirom-ents, Am, Pittsburgh, PA, April 1984, pp. 113-123.

7. Gillette, D. "b"PdIX Time-Sharing Systea.*'

Journal 57, 6, Part 2, July-August 1978, all.

8 . Habemtann, A . N, an8 6. S. Hotkin, "me Gandalf Software Development

Enviroment." Department of Computer Science, Camegie-Hellon,

Pittsburgh, PA, 1982.

9. Kapbaa, Simon, et al. "An Architecture for Tool 1ntegrati.0~1."

Proceedings of the Workshop on Advanced ProgrmLing Enviroments,

Torndhiern, Norway, June 1985.

10. Kernigham, B. €4. and D. M. Ritehie,

Prentice-Wall, Gnglewood Cliff, l4 S, 1978.

11. Kiper, James D. "The Integration of Software Development Tools."

Technical Report 87-001, Hiami University, April 1887.

92. Osterweil, Leon J. "Toolpack - AR Experimental Software Development

Research Project, " 9, 6 ,

Boyember 1983, pp. 673-585.

13. Ramanathan, J. and D. Soni. "Design and Implementation of an Adaptable

Software Enviroment." 8, 314, 1983, pp. 139-159.

14. Reiss, S. P. "PECAEJ: Progrm Development Systems That Supports Ealtipfe

Views." Seventh International Conference on Software Engineering, IEEE

Coi-nputer Society, Orlando, FL, March 1984, pp. 324-333.

15. Riddie, WilLim E. 'Tuture Software Engineering Envirom.erts." Kegmcie

Address, AGN Computer Science Conference, Atlanta, GA, February 24, 1988.

16. Schwartz, H. D., EX. H. Delisle, and V. S . Begwani. "Incremental

Cowilation in Hagpie." Proceedings of the AClvl S I G P M 9 4 Smosium on

Contpiler Constmction, ACH, Hontreal, Canada, June 1984, pp. 122-131.

17. Soni, D. A . Design and nodeling of TRIAD - An Adaptable Integrated

Software Eaviroment. Ph.D., The Ohio State University, Coldus, OH,

June 1983.

18. Standish, T. A . and R . H. Taylor. "Arcturns: a Prototme Advanced Ada

Programing Envirament." Proceedings of the ACH SIGSOFT/SIGPLA,Y Software

k-igineering Smposium on Practical . Software Development Envirom.ents, 8614,

Pittsburgh, PA, April 1954, pp. 57-64.

1 9 . Stonebraker, HichaeL, Jeff Ariton, and Eric Hgnson. 'Txtending a Database

Syskem With Procsdrrres ." ACM Transactions on Database Systexs, 12, 3

(Septe~~ber 1987) , 350-376 .

20, Teitelbaum, T., T. W. Reps, and S. Mortwitz. "The and Wherefore of

the CcrmeiS Program Synthesizer."' SIGPLaM Hotices 16, 6, June 1981,

pp. 8-16.

21. . Conrputer Science Division, Department of

~lectrical Engineering and Coquter Science, University of California,

Berkely, CA, 1984.

22. Vax ~anguage-Sensitive Editor and Vax Source Code Analyzer Guide, Digital

~quipment Corporation, Haynard , Hass., August 1987.

Figure 1: %stem Stru for Integration of

Figure 2 View E ctor Output mm%utor

Figure 5: Structure of the C Program dor and Output Distributor

