Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1988

Techniques for the Integration of
Existing Tools

James Kiper
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/69

MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1988-003

Techniques for the Integration of Existing Tools
James D. Kiper

School of

Engineering &
Applied Scienee

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Techniques for the Integration of Existing Tools

by

James D. Kiper
Systems Analysis Department
Miami University
Oxford, Ohio 45056

Working Paper #88-003 03/88

1B43E

Techniques for the Integration of Existing Tools
James D. Kiper, Ph.D.
Systems Analysis Department
Miami University

Oxford, Chioc 45056

March 19488

Technigues for the Integration of Existing Tools

SUMMARY

The purpose of this paper is to explain and demonstrate the advantages of
tool integration and the reuse of existing tools. Several technigues for the
integration of existing tools are presented and discussed. These technigues
include the use of a monitor, simulated incremental operation, syntax padding,
view extraction, and output distribution. The advantages of the use of these
methods of tool intregation are illustrated by their use in integrating an
existing compiler and on-line debugger. The commands that are produced by
this synergism have increased both the user friendliness of the toocls and the

power of the resultant commands.

Key words:
Integration, software tools, incremental operation, techniques of inte-

gration, softiware development, software environment

INTRODUCTION

The primary objective for the research described in this paper is to
improve the quality of existing software tools by their integration into a
software environment. Tools are integrated when they communicate and share
with each other (often through a common project information repository). By
being more cognizant of the overall purposes of the project development envi-
ronment and being aware of the presence of other tools, an integrated tool can
more effectively aid in the development process. The set of tools for an
environment, when integrated, become a team rather than a group of "self-
centered individuals™. This tool integration concept has been a theme of many

recent programming environments [4,8,12,14,18,201.

Benefits of Tool Integration

The conceptual benefits of tool integration are dual. First, tools in
cooperation have a syne;gistic effect which is greater than any single tool
could achieve alone. ’§¥;?Yading muich of the duplication of effort (as in
repeated parsing and unparsing of data), cooperative tools are able to

chieve a greater efficiency. {In the contemporary time of relatively in-

(Y]

hardware, efficiency may seem to be unimportant, except as it

o
o

xpensiv

uenc

I\

oot

nf

i

s the response time to the user. The coptimization of the user’s

The second conceptual advantage of integrated tools is an increased
level of user friendliness. This is notably demonstrated in a common user

interface. By presenting a uniform syntax to the user for all tools and a

consistent interface within a tool, idiosyncratic differences among tools
and pernicious modes within a tool can be avcoided. The dencuement is the
user's concentration of his/her attention upon the project information.

Ultimately the user is no longer aware of the tools, but can focus on the

project information.

Integration of Existing Tools

Having established the advantages of the integration of tools, we now
proceed to consideration of the integration of existing tools into a soft-
ware environment. Such an integration has, of course, all the advantages of
integrated tools, i.e. more powerful commands and increased user friendli-
ness. The use of existing tools in such a cooperative environment has addi-
tional advantages, nct the least of which are the economic considerations.
Creating, i.e. designing and coding, a new software tool can be an expensive
operation in terms of computer and human resources. The cost of integration
of existing tools lies in providing the appropriate view of the information
base to the tool and placing the results of the tool back intq the correct
context of the information base. Both of these can be accomplished rela-
tively inexpensively as has been demonstrated by means of an implementation.
{This integration of an existing compiler and a symbolic debugger into =
software environment will be discussed later in the section on implementa-

tion.)

A vital issue is the user's level of confidence in 2 tool. Although a
new tool is a technological advancement, initially it may not be perceived
as such by the user. FHNewly produced tools often eveclve through several ver-
sions in which improvements are made and serious errors are corrected. In

addition, user productivity normally declines until the idiosyncracies of a

new tool are learned; anslogous idiosyncracies in an older tool have been
mastered. Furthermore, a sophisticated tool often has a detailed set of

commands and capabilities that are best learned through experience.

The past decade has witnessed a great amount of work in the research and
development of software tools. Contemporary tools are quickly outdated by
this progression. Existing tools are expanded in power and increased in
usability. A software environment which is capable of integrating tools as
they develop and prove their reliability can sustain its utility. HMost
environments include 3 great variety of tools. If these tools can be
replaced on an individual basis while retaining the remaining tools, the
integrity of the environment is maintained. Such an evoclution of the set of
tocls in the environment's tool kit reaffirms the user's faith in the
reliability and usability of the overall system. An environment which can
incorporate existing tools has increased flexibility and adaptability. It
is not locked into the syntax, structure, or capabilities of the current set
of tools. Furthermore, the potential exists to develop commands for these
existing tools that are even more sophisticated than those performed by more

technologically advanced tools.

Related Work

The value of integrating tools has been widely recognized in the computer
science and software engineering communities over the past decade. HMany
tool collections are now designed with a view toward integration. The most
successful of these are the language sensitive editors which are effectively

a very tight integration of an editor and a translator (compiler).

In addition to this work, therg is an increasing awareness of the need to
integrate existing tools. At the University of Illinois, the Illinois Soft-
ware Engineering Program has proposed an open systems architecture whose
goal is to make the addition of new tools simple [8]. This is to be accom-
plished through a "tool bus” or "software backplane.” This group proposes
the development of as many intercommunication protocols as necessary, rather
than forcing all tool communication to occur through a common protocol. The
"partial sort morphisms” of their work are the view extractor and output
distributor of this research. (These terms, view extractor and ocutput dis-

tributor, will be discussed subsequently.)

Work at the Software Productivity Consortium has centered on the develop-
ment of a framework into which new and existing tools can be integrated
{1, 15). This framework hinges on a project library, a session coordinater,
and a "harness.” The session coordinator is responsible for dynamically
composing tools as requested by the user, orchestrating the execution of
these tools, and assuring that the data needed by tools are avgilable. The
project library is a collection of technical and project management data and
relationships among this data. A "harness" is z piece of software which
mediates the differences in the data requirements of the tool and those of
the data base. The research described in this paper has determined an anal-

ogous division of labor.

Another approach to the problem of tool integration was taken by Chalfan
at Boeing [2, 3]. In this work, infermation sbout the relationships among
various tools was incorporated in the rule base of an expert system. Given
a designed output, this expert system was designed to check for the inputs

which would produce that output. If those inputs were present, that tool

was invoked. If those inputs were not present, the expert system's rules
are evaluated to determine which tools (if any) could be invoked to create
those inputs. (The recursive nature of this approach easily can be seen.)
The significance of this work is in the capturing of the relationships among
tools in the rule base for an expert system. This technique worked well in
the given application area (design of aerospace vehicles) because the tools
involved generally produced simple, numeric data rather than the highly

structured data typical in software development environments.

These ideas have begun to appear to a limited extent in commerically
available software. A prime example of this software is the Language
Sensitive Editor developed by Digital Equipment Corporation for its Vax
family of computers [22]. This product works with all the programming
languages for which DEC furnishes Vax compilers. Thus, existing compilers
can be integrated with an editor. (The implementation of this tool is not
clear from the user manual. The syntactic knowledge about these languages
seems to have been coded into this tool. However, it is clearly possible to
invoke the compiler from inside the tocl and to have the results of the

compile avalilable to the editor.)

TECHNIQUES FOR INTEGRATION

This section will describe some techniques which have proven useful in the

task of integrating existing tools. The topic of degrees and categories of

tool integration are discussed in a companion paper [11]. Figure 1 illus-

trates the relationship among the primary components of such an integration.

The Use of a Common Monitor

The general purpose of the monitor (alias user interface) is to coordi-

nate the various interactions, i.e. toocl--tool, tool--information base,
user--tool, and user--information base. The monitor can provide an impor-
tant interface to the tools for the user. Since all interactions between
the user and tocls coccur through the monitor, it can provide a more uniform
interface by providing a common set of prompts and a consistent command
syntax for all tools. The monitor can trap, process, and redirect the input
and ocutput to/from the tools. (This is analogous to the "session control-

ler" in the work at the Software Productivity Consortium, SPC [1,15].)

As the controller of the tools, the monitor can manipulate the tools to
produce a synergistic effect which is greater than that of any single tool.
For example, the monitor can coordinate an editor and debugger so that when
the debugger stops at a breakpoint, the editor's cursor is positioned in the

project information at the corresponding statement.

Tool as Child Process

The advantages of a common monitor or user interface to the set of tools
is magnified if the tools can function as a child process of the monitor.
The potential to operate in such a manner is dependent upon the operating
environment in which the implementation takes place. If the operating sys-
tem allows concurrent processes, and if the tool tc be integrated uses the
facilities provided by that operating system, then that tool may be able to
function as a child process of the monitor. This allows the monitor to

exercise a greater amount of control and coordination over the various tools.

The Use of Input Pauses
The monitor can conveniently exercise control over child process tools by

the effective use of times at which the tools pause for user input. (It is

possible for the monitor to obtsin control from the tool at arbitrary points
during the tool's execution. This would require modification to the tool's
code. Our purpose here is to avoid such modification because of the inher-

ent complexity of that task in general.)

By using the times when a tool pauses for user input, the monitor can
regain control from the tool. Having obtained control, the monitor can in-
voke other tools, retrieve information from the information base, provide an
improved prompt for the user, etc. Furthermore, the monitor can simulate
the incremental operation of a tool by means of this technique. By switch-
ing control from tcool to tool and storing each tool's state information, the
monitor can present the impression to the user that the tools are operating

incrementally.

When the tool pauses for user input, the monitor can usurp control and
save the state of the tool in the project information base. Then, before
letting the first tool resume by providing input to it, the monitor can ini-
tiate another tool, obtain data from the information base, analyze project
information produced thus far, ete. This process simulates incremental tool
operation [5,6,16] by providing information from multiple sources within a

small interval of time.

The monitor can incorporate the information base in tool processing.
Relevant project information can be retrieved to present to the user or to
modify or enhance tool commands. For example, the project information at
the code level can be queried using a database tocl to determine the loca-
tions of all statements that modify the variable "x”. This can then be used

to send several commands to another tool, the debugger, which sets break-

points at each of these locations. This task is beyond the scope of either

tool working individually without user intervention.

The Use of a Project Information Repository

Storing information in, and retrieving it from, the information base is a
primary task of a software environment. The project information is the most
important inanimate resource that a corporation or an organization has. A
database of some variety is necessary to fulfill the storage and retrieval
needs. An existing database can provide the requisite functionality if it
allows project information to be stered and retrieved as needed. The guery
mechanism of many existing database systems provides a facility for answering
the unanticipated type of gquestion that often arises in project development.
A database management system (DBMS) is designed to handle a large volume of

information such as that produced by project members and by tools.

In descriptions of the integration work at the SPC, the project
information repository is referred to as the "project library” [1,15]. 1In
the framework used in the related work at Illinois, a database of project
information is not a primary component. They recognized the need that most
software development projects have for a database by including it as a tool
[¢]1. Chalfan's work at Boeing introduces the possibility of storing tool
relationship data in an information base [2,3]. (This work does not center
on software development. Consequently, storage of project information is

not discusged.)

If such a project information base does not exist, the first step in the
integration of existing tools is to develop one. The ability to gather all

the project information into a central location has not only the obvious

benefits to project management but alsc aids in the integration of tools.

These integration advantages are further explicated in subsequent sections.

The View Extractor and Output Distributor

The task of overcoming syntactic dissonance can be accomplished by means
of a view extractor in combination with an output distributor. A4 view
extractor is a generic system component which extracts the necessary infor-
mation from the information base, changes the syntax to that expected by the
tool, and then submits that data to the tool as input. ‘A corresponding com-
ponent, the output distributor, performs the reverse operation. The results
of the tool are distributed to the spot in the information base that best
reflects the context of those results. These results are more meaningful

and more easily understood in context. (See Figure 2.)

These two components enable the existing tools to be incorporated into a
system with no internal changes to the tools. A view extractor and output
distributor are written to provide the correct view for the tool and to dis-
tribute tool results. The task of building these two components is much
simpler, in general, than constructing 2 new tool. This is especially true
for sophisticated tools to be used for critical operations. Since the tool
is unchanged, its reliability is not subject to question. The construction
of the view extractor and the output distributor is made especially easy if
the information base provides commands or functions to traverse and query
the project information. Two such components are necessary for each tool
which is t0 be integrated since the view extractor and output distributor
must be aware of the syntax requirements of the tools and the siructure of
the information base. (The development of 2 generator for the view extrac-

tor and/or the ocutput distributor is theoretically feasible, and is a

Y

possible area of future research and development.)

The need for the view extractor and output distributor is echoed in the
SPC integration work in their discussion of a "harness™ for integrating
existing tools [1,15]. At the Illinois Software Engineering Program, these

conversion tools are given the appellation "sort monphisms™ [9].

Trapping of Output in the Information Base
The trapping of output of a tool to redirect to another location is

necessary if existing tools are to cooperate in an environment. The results
need to be stored in the information base rather than in an external file in
order that other tools may use the data produced. 1In a complementary sense,
the tool nmust allow the monitor and, indirectly, the user to control the
tool and to integrate it into the system without rewriting or modifying the
tool in any manner. (The Unix operating system provides the pipe mechanism
and input/output redirection [7,21] which can be used to accomplish these

tasks.)

Syntax Padding

Since syntactic dissonance, i.e. incompatibility in the syntax of tools,
is one of the major hurtles to cross in integrating existing tocls, syntax
padding to achieve syntactic harmony is a vital technique. (Syntactic
dissonance is further explicated and illustrated in [11].) This padding
cccurs in two methods. Local syntax, i.e. context free syntax, can be pro-
vided by "action routines.” These action routines are procedural components
which are associated with local chunks of logically related information, and
are associated with a particular tool [19]. Hence, the knowledge of the

tocl's syntactic requirements and an understanding of the structure of the

10

project informastion is available to these routines.

Syntax additions and corrections of a more global nature can be made by
examining the remainder of the project information to find the needed refer-
ents. This is obviously not the task of a leocal routine, but needs to be

accomplished by a more global agent.

ADVANTAGES OF THIS APPROACH TO INTEGRATION

The integration of existing tools into a software environment by the tech-
niques herein described has been depicted as ergonomic, effective, and
economic. The term "user-friendly” has been used so often it has become
almost meaningless. To be more specific, the primary benefits which are

ergonomic , i.e. user-friendly, can be summarized in the statement:

The user's focus of attention remains on the project
information rather than on the tools or other system

components.

To be more precise, these benefits include the following:
0 a more uniform tool interface,
O automatic invocation of some tools,
] tool operation and cooperation in the background,
O more incremental tcol operation,
o presence of a monitor to smcoth (or obscure} the tool transitions,
¢ padding of syntax to remove syntactic details from the user, and

] improved command syntax.

Each of these can enhance the user's productivity by maintaining his/her
concentration on the problem being solved or the system component being

designed, while removing non-productive distractions and details.

The effectiveness of the integration of existing tools is demonstrated by
the increase in the power of the tool commands that are possible by means of
tool cooperation and tool monitoring. (Specific and detailed examples of
these enhanced tool commands are explicated in the following section.) This
increased effectiveness is gained by the following:

the ability of the mounitor to capture run-time status,
the use of the monitor in conjunction with the gquery mechanism of
the project information base,
the use of the monitor as a common interface to the tools,
the coordination by the monitor of the application of tools on the
project information base, and

° the ergonomic (user-friendly) presentation of the results of the

tools.

Kot only can the power of simple tocls be multiplied, it can often surpass

that of more sophisticated and complicated systems.

A11 of these advantages would be rendered impotent if the price, in terms of
design and coding time and complexity, was much greater than for the creation
of new, more integrated tocls. The concepts and techniques introduced in this
paper are an attempt to simplify this task of integration. Their success has
been demonsirated in an accompanying implementation, i.e. the integration of
an existing compiler and symbolic debugger. Although accurate data is gener-
ally not available, some approximate size and development time data from
developers has substantiated the intuitive hypothesis that integration of

existing tools invelves less work than development of new tools with similar

power. One is forced to the conclusion that time and effort spent in the
design and implementation of new tools which are not conceptuzlly different or
more powerful than existing tools is an ineffectual use of these resources.
These resources would be more productively applied to the integration of the

existing tools in a way that increases their friendliness and power.

AN INTEGRATION OF EXISTING TOOLS

The power of the integration of existing tools in general, and the afore-
mentioned technigques in particular, is illustrated best by a discussion of an
actual integration. The tools chosen for integration were the standard C com-
piler and the DBX on-line debugger provided by Unix. The TRIAD [13,17] soft-
ware environment provided the project information base and the monitor. (See

Figure 3)

In such a system, the number of possible, useful commands is virtually
unbounded. The compiler and the debugger subsystems are similarly very
fertile. The ability to modify commands by means of data obtained from the
project information base adds another factor to the increase in commands.
Obviously, all the possible commands cannot be implemented. A set of “primi-
tive” commands was chosen that could provide an adequate base for manipulating
the compiler and the debugger while demonstrating the feasibility of the imple-
mentation techniques, and the power and user friendliness of the resultant
integration. The discussion of this subset of primitive commands which fol-
lows is organized by purpose - compiling, interface checking, debugging, and
code instrumenting. A set of "composite” commands is then discussed. These
commands are & composition of queries to recover information from the project

information with tool commands modified by this information.

13

Primitive Commands

The basic compiler command is one which invokes the view extractor to
obtain a complete program from the project information base, adds the
necessary syntactic infeormation, and sends the resulting file to the
compiler. The program is stored in the information base as a tree. The
information store at each node of the tree includes much more than program
instructions. Documentation and various descriptive attributes are also

stored at each necde.

Upon completion of the compilation, the ocutput distributor places the
errors back into the tree with the statement at which the error occurred. A
command is provided to position the cursor at the first error in the pro-
gram. {Since "first" is somewhat ambiguous with respect to a tree, this is
interpreted to mean the error which corresponds to the statement with the
lowest line number in the extracted file.) Subsequent application of this

command will move the cursor to the position of the next error.

The compile command at the procedure level tests the syntax of a particu-
lar procedure. Since the C compiler which is being used without change is
not incremental, compiling an entire program repeatedly can be quite time
consuming. By allowing the syntax of one procedure to be checked, response
time can be shortened. To permit the testing of one procedure at a time,
the user is prompted for a driving routime. This serves as the main progranm
for this procedure, and is compiled with the procedure which is produced by
the view extractor. The "find first error” command used after compiling a
single procedure causes the cursor to be positioned at the location of the

first error in that procedure.

14

The C compiler can also be used to check the syntax of an individual
statement. A view extractor automatically composes a simple main program
which includes this statement and all other definitions active in the scope
of that statement. (This is, of course, more definitions than are needed.
When a separate lexical analyzer becomes available, it could be used to
determine the presence of variables, procedure or function calls, or other
identifiers. The list of definitions to be included could then be

efficiently reduced to an optimal number.)

Interface checking is the process of determining if all procedure calls
are consistent with their definitions. 1In C this includes determining that
the type of actual parameters and formal parameters is compatible. This
check cannot, by nature of typing in the C [10] language, be very complete.
Coercion of types is permitted and often used. (This is a feature of this
language which adds flexibility, but whose misuse and over use produces ab-
struse code.) This technique is demonstrated in the context of C although
it would be more useful in a more strongly typed language like Pascal or Ada.
The implementation technique is for a view extractor to collect all the code
that involves the definition or use of a procedure. This includes the
procedure name, the formal parameter list, the declaration of the types of
these parameters, and a simple procedure body that contains only procedure

calls and the definitions of the actuazl parameters of this cazll.

When applied at the procedure level, the same operation is performed on
all code in the subtree rooted at that procedure. By submitting these pro-
cedure calls and definitions to the compiler, any mismatches not allowed in
C are detected. An cutput distributer can then convey this information to

the user in the most effective manner.

The method of integrating the DBX debugger permits all the commands of
that tool to be used. Other capabilities and improved command syntax adds
more powerful commands and increased user friendliness for all commands. In
addition to these improvements and additions, all the original commands are

permitted in their previous syntax.

The most used commands of the debugger are:
¢ Set breakpoint,
0 Print the value of a variable,
¢ Execute the next statement (i.e. step), and

o <Change the value of a variable.

Various versions of these important commands are provided by this integra-
tion whose syntax and usage is adapted to make them more palatable to the
user. Each of these commands, when appropriate, can be applied with
different results at several levels--at the statement level, the control

structure level, and the procedural level.

A breakpoint can be set at a specific statement in the program by posi-
tioning the cursor at that statement in the tree of project information,
then issuing a simple command. (A brezkpoint is a notation in the progranm
to cause the execution to temporarily pause at that precise point in the
program.) The simple command is generic in that no identification of the
location of the statement has to be made. This information is taken from
the context of the user's focus of attention {(as indicated by the position

of the cursor) by a view extractor.

A particularly practical and prevalent debugging operation is the setting

of a breakpoint just prior to, inside, and immediately after a control

16

structure., This is sccomplished in this implementation via a single command.
The control structure used is that one which immediately encloses the state-
ment at the current cursor position. A similar fiat sets breakpoints in the

procedure in which the cursor lies.

The printing of the value of a variable logically makes sense at the
statement level only. The user positions his/her cursor at the declaration
of the variable in question. A view extractor can extract the name of the
variable and can use this to compose the command that is necessary for the
DBX debugger. The user is protected from the error prone task of correctly
typing the name of the variable in the precise command syntax. An output
distributor is responsible for obtaining ocutput from the debugger tool and

presenting it to the user.

A primary capability of any debugger is to control the execution of a
program by stepping through the program one statement (or a few statements)
at a time. Stepping at the statement level is provided by DBX. The monitor
can adjust this step size by issuing a sequence of "step"” commands before
returning control to the user. A more useful technique is to allow the user
to step over an entire control structure. Thus, the monitor can step over a

"while,” "repeat,” or “for” loop to avoid the monotony of stepping through =

large number of iterations of the loop.

The ability to change the value of z variable is similar to the process
of printing the value of a variable. The user's cursor is positioned at the
declaration of the variable. The new value is entered by the user in re-
sponse to a prompt from the user, and is used by the monitor along with the

name of the variable to issue the precise DBX command.

17

As a part of the testing and debugging process, it is useful to instrument
the code. This is the process of monitoring the execution of a portion of a
program by furnishing the user with data (feedback) about the state of the
execution environment. At the minimum, this data is a dynamic report about

which procedure, statement, or control structure is currently being executed.

Despite this instrumentation being part of the debugging process, its im-
plementation was achieved without using any symbolic debugger. In response
to a command to instrument an individual statement, the monitor inserts an
identifying print statement immediately before and after that statement in the
program before submission to the compiler. At the control structure level,
the result is the insertion of the appropriate print statements be- fore,
inside, and after that structure. The procedure level is handled in a
parallel manner. When the program is run, either alone or by the debugger,
these print statements help the user to monitor the progress of the execution
of the program. This additional data may help identify the possible areas

of error to be further explored with the symbolic debugger.

Composite Commands

The composite commands are those whose implementation is not explicitly
supported by either the C compiler or the DBX debugger, but require interven-
tion and processing in a significant manner by the monitor and a view extirac-
tor. {(This categorization is subjective and is used only as an organiza-
tional technique to present the commands.) The first group of composite
commands to be discussed can be characterized further as static., Once the
command is formed, there is no additional processing necessary from the
monitor during execution of the command. The general form of these commands

is "Execute the tool command on the portion or portions of the information

18

base which satisfy the query.” The monitor determines the location of the
one or more logical portions of the tree which satisfies the gquery. This
data then is packaged by a view extractor to compose the necessary tool
commands. The usable queries, at this point in the development of the sys-
tem, have to be anticipated and their solution determined when the system is
compiled. (With the introduction into the system of a more adequate data-
base management system with a sophisticated query language, this facility

can be madé much more flexible and, hence, more powerful.)

Some examples of these commands are the following:

o Compile all procedures which contain a reference to the variable "x".

o Check the interfaces of all procedures which were modified since

February 1.

0 Set a breakpoint at all statements which reference the variable

"

"sum".

1] Set a breakpoint at all procedures which were modified since

January 15.

o Print the value of all varisbles used within the current control

structure.

Dynamic composite commands are those in which there is interaction between
the monitor and the tool while the command is being executed. These commands
generally have the form “Execute the command while the dynamic condition is

true." Examples of these dynamic, composite commands follow:

18

Compile the current program after each 100 editor commands.
Compile the program when editing is finished on procedure “input
scores”.

Step to the next statement while x > O.

Stop when a procedure is called which modified since February 15.

In summary, these commands are a small sample of the total possible. This
subset does demonstrate the potential gain in power and user friendliness

obtained from an application of these concepts and techniques.

CONCLUSIONS

This paper has presented some techniques for the integration of existing
tools. The need for such integration is two-fold. First, integration of
tools is a paradigm which has proven quite effective in improving user
friendliness and the power of tools. Secondly, the integration of existing
tools can bring the power of integration to set of toocls which have been
proven reliable, with which users are comfortable, and in which there has

already been a large financial investment.

The effectiveness of these techniques has been demonstrated in the integra-
tion of an existing compiler and debugger. The commands discussed in this
paper are new commands which neither tool was able to provide by itself. 1In
general, the interactions with the user for these new tools are more under-
standable and user friendly than the commands ané messages of the original

tools.

In the final analysis, such integration has been demonstrated to be a cost

effective way of improving the gquality of the tools currently available.

20

1i0.

REFERENCES

"Build 1 Demonstrates Harness Technology for Off-the-Shelf Tools.” The
Software Productivity Consortium Quarterly, Vol.2, Eo. 1, January 1988,

Chalfan, Kathryn M. “A Generic Tool for Integrating Software
Components.” The Boeing Company, 1887.

Chalfan, Kathryn M. "A Knowledge System that Integrates Homogeneous

Software for a Design Application.” The AI Hagazine, Summer 1986.

Donzeau-Gouge, V., G. Huet, G. Kahn, and B. Lang. "Programming Environ-
ments Based on Structured Editors: the Mentor Experience." Inria, May

1980.

Feiler, P. H. and R. Medina-Mora. “An Incremental Programming Environ-
ment." Department of Computer Science, Carnegie-Mellon University,

Pittsburgh, PA, April 1980.

Fritzson, P. "Preliminary Experience from the DICE System a Distributed
Incremental Compiling Environment." Proceedings of the ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, ACM, Pittsburgh, PA, April 1984, pp. 113-123.

Gillette, D. V“UNIX Time-Sharing System.” The Bell System Technical
Journal 57, 6, Part 2, July-August 1978, all.

Habermann, A. H. and D. S. Botkin. “"The Gandalf Software Development

Environment.” Department of Computer Science, Carnegie-Mellon,

Pittsburgh, PA, 1982,
Kaplan, Simon, et al. “An Architecture for Tool Integration.”
Proceedings of the Workshop on Advanced Programming Environments,

Torndhiem, HNorway, June 1986.

Kernigham, B. W. and D. M. Ritchie. The C Programming Language.

Prentice-Hall, Englewood Cliff, B J, 19878.

i1.

1z.

13.

14,

15.

16.

17.

18.

Kiper, James D. "The Integration of Software Development Tools.”

Technical Report 87-001, Miami University, April 1987.

Osterweil, Leon J. “Toolpack - An Experimental Software Development
Research Project.” IEEE Transaction on Software Engineering 9, 6,

November 1983, pp. 673-685.

Ramanathan, J. and D. Soni. "Design and Implementation of an Adaptable

Software Environment."” Computer Languages 8, 3/4, 1983, pp. 139-159.

Reiss, S. P. "PECAN: Program Development Systems That Supports Multiple
Views."” Seventh International Conference on Software Engineering, IEEE

Computer Society, Orlando, FL, March 1984, pp. 324-333.

Riddle, William E. “Future Software Engineering Environments.” Keynote

Address, ACM Computer Science Conference, Atlanta, GA, February 24, 1988.
Schwartz, M. D., N. M. Delisle, and V. S. Begwani. “Incremental
Compilation in Magpie."” Proceedings of the ACM SIGPLAN ‘84 Symposium on

Compiler Construction, ACM, Montreal, Canada, June 1984, pp. 122-131.

Soni, D. A. Degign and Modeling of TRIAD - An Adaptable Integrated

Software Environment. Ph.D., The Ohio State University, Columbus, OH,

June 1983.

Standish, T. A. and R. N. Taylor. TArcturus: a Prototype Advanced Ada
Programming Environment."” Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Sofiware Development Environments, ACH,

pittsburgh, PA, BApril 1984, pp. 57-64.

Stonebraker, Michael, Jeff Anton, and Eric Hanson. TExtending a Database
System With Procesdures.” ACM Transactions on Database Systems, 12, 3

{September 1987}, 350-376.

20.

21.

22.

Teitelbaum, T., T. W. Reps, and §. Hortwitz. “The Why and Wherefore of
the Cornell Program Synthesizer.” SIGPLAN Hotices 16, 6, June 1981,
pp. B-16.

Unix Programmer's Manual. Computer Science Division, Department of

Electrical Engineering and Computer Science, University of Cazlifornia,

Berkely, CA, 1984.

Vax Language-Sensitive Editor and Vax Source Code Analyzer Guide, Digital

Equipment Corporation, Maynard, Mass., August 1987.

Monitor

Figure 1: System Structure for Integration of Existing Tools.

View
/’#’_——-\ p

________/ Extractor
3 . A
Project Existing
Information Tool
Base e ™
Output
\&__’/ X
Distributor

L 7

Figure 2: View Extractor and Output Distributor

Program

ot

~

Syntactically

Information
/,.——-'-—--——\ C Program
\._________// Extractor

A\
Project
Information Errors
Base f |
Compiler
_____7 / Output
Compiled Distributor
Program

Padded Progam\l/

%

Existing
C

Compiler

.
Compiler

Results

Figure 3: Structure of the C Program Extractor and Output Distributor

