Computer Science and Systems Analysis
Computer Science and Systems Analysis
Technical Reports
Miami University Year
”PanaeaMud An Online, Object-oriented
Multiple User Interactive Geologic
Database Tool”
Erich Boring
Miami University, commons-admin@lib.muohio.edu
This paper is posted at Scholarly Commons at Miami University.
http://sc.lib.muohio.edu/csa techreports/34

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1993-010

PangaeaMud
An Online, Object-oriented Multiple User Interactive
Geologic Database Tool
Erich Boring

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

PangaeaMud
An Online, Object-oriented Multiple User
Interactive Geologic Database Tool
Erich Boring
Systems Analysis Department
Miami University
Oxford, Ohio 45056
Working Paper #93-010 12/93
PangaeaMud
An Online, Object-oriented Multiple User
Interactive Geologic Database Tool
Master's Thesis Project
b
by
Erich Boring
December 3, 1993
Abstract
This paper provides an overview of the design,
development, and use of the PangaeaMud Database System.
Section I gives an introduction to pertinent concepts and
discusses previous work in the area. Section I1 is
devoted to the non-technical aspects of the system. A
brief user's view of the system is provided, along with
discussion of the internal environment utilities.
Section I11 illustrates the workings of the system from
the programmer's viewpoint and contains information on
the main entity relationships within the database and
their implementation.
Contents
I. Introduction
A. Purpose
B. Previous Work
C. What is a MUD/MOO/MUSE?
D. Developing PangaeaMud
11. The User's View of PangaeaMud
A. Sample Internal View
B. Why the PangaeaMud Environment?
C, But why Mud?
D. Embedded MUD Features
1. Communication
2. MUD Security Features
111. The Coder's View of PangaeaMud
A. The Utility of C and C++
B. Object Orientation
C. Object Design
D. Security and the Coder
E. PangaeaMud Specifications
1. Cosmetic Changes
2. Functional Changes
3. Geologic Modelling Changes
IV. Epilogue
V. Acknowledgements
VI. References
VII. Appendices
A. List of Code Changes
B. Real-time Communication Commands
I. Introduction
A. Purpose
There exist problems of communication, information retrieval,
information storage, and interdisciplinary data usage in many
fields at the present time. Students and professionals alike are
hampered by lack of reference skills, time, and effort in finding
information they need for their work. For these reasons and
others, modern professionals are in need of various tools to let
them find data, test hypotheses, and communicate their findings at
the rapid pace required today.
PangaeaMud is one such tool. PangaeaMud provides the user a
friendly virtual environment in which anyone with Internet remote
login capabilities may convene for real-time meetings, exchange
discourse, and access stored geologic information in user friendly,
natural language ways, rather than utilizing complex or arcane
retrieval languages.
PangaeaMud was created by modifying a currently available free
software package written in C and a variant of C++ known as LPC
(Lars Penji C). Specific objects and classes were designed and
coded for the object database, functions for the object interfaces
were created, and the freeware was stripped of unused code to
improve the performance and space requirements. Finally, the
database was loaded from the Encyclopaedia of Mineralogy and other
definitive texts [Ill, [13], [18], [26], and the system prototype
was made available for use on the machine known as phoenix.
B. Previous Work
The Multi-User Dimension (MUD) is not a new concept, or even new in
operation. Since the time when our ancestors first visited tribal
magic workers who were thought to be able to travel in spirit to
observe distant happenings or even send messages, man has had the
idea; the MUD is merely the latest expression of this desire to
communicate in a virtual world. In this latest incarnation, the
MUD, there is finally a network of virtual meeting spaces for the
exchange of ideas and information.
At least two similar projects are already in existence,
Xerox's Jupiter Project, which virtually models Xerox's research
laboratories in Palo Alto, California and Birmingham, England. In
the virtual model, the two are tied together, allowing researchers
from either facilityto exchange information and mingle socially in
real-time [9], [lo].
The second work-oriented MUD is the MIRE Project at MIT. MIRE
(Multi-user information retrieval environment) utilizes a base MOO
software to enable astrophysicists to hold meetings and retrieve
and display data available through Internet "gopher" facilities
[161, [~oI:
Classically, papers upon MUD research have been divided into
two majar camps - ethnographic reports and technical reports. Hard
science coders are trying to show the usefulness of the MUD within
a framework of the kind of software and hardware of which the MUD
is composed, while the soft sciences seem drawn to the MUD as a new
frontier in social behaviour phenomena [8],[25]. This paper will
aim for a balance of the two, though a balance decidely favoring
the hard science view, as almost all of the social aspects of
mudding will be covered in this background section.
C. What is a MUD/WO/MUSE?
At the lowest level of commonality, all of these are virtual
environments residing on a server to which any machine with remote
login capability may establish a connection over the Internet [30] .
The user may then create a virtual icon to represent
himself/herself in this environment. Multiple users may interact
in these environments in real-time, rather in the manner of
teleconferencing. Depending on the wishes of the administrative
coders of the environment, the remote users may have a greater or
lesser power to define this icon, to express their ideas, to
exchange information, or to create additional software within the
environment to actually permanently change the environment.
Although currently most of these environments have a text-
based interface only, a few are expanding into the world of
graphics on X-terminals, and a very few, such as the Jupiter
Project at Xerox Palo Alto Research Center, are working to include
realtime video and audio capabilities [lo], [15].
The original MUD was written in 1979 by Richard Bartle and Roy
Trubshaw of the University of Essex, England [3], and started
rather an avalanche of varieties of the software, written in
numerous languages. Of the numerous offspring, there may be said
to have formed two distinct schools of MUD use, the adventure game
MUDs, which generally retain the word MUD in their names (AberMUD,
LPmud, DikuMud, KMud) and the social interaction MUDs, which tend
to use a variety of acronyms (MUSE, MOO, TinyMud, SMUG, TinyMuck,
MUSH, LambdaMOO) [30], [31].
Most of the higher level work on MUD research is being
performed within the confines of this second group, where coding
internally takes place in interpreted languages which support
object orientation such as LambdaMoo, which was originated by Pave1
Curtis of Xerox PARC [8], [9]. The second major division in MUD
architecture is based on the language used to develop the MUDs.
The adventure MUDs are usually coded both externally and internally
in C and C++ variants such as LPC, while the social MUDs tend to
switch internally to interpreted language coding. PangaeaMud is a
hybrid, as it maintains the C coding structure as do the adventure
MUDs, but is more similar in environment and function to the social
MUDs.
D, Developing PangaeaMud
The idea for PangaeaMud came about when a decision was
required for the author's Masters thesis project. The MUD
environment was sufficiently complex that it tied together almost
all of the coursework required for the degree - programming,
database, information systems, data communication, design of data
structures, and even operating systems. As the Masters' candidates
are encouraged to utilize their undergraduate fields in their
projects, a geologic software package was suggested.
Informal surveys of local geologists suggested that such a
virtual meeting place, with mail and data manipulation capabilities
would be welcome. Thus the core concept ,of PangaeaMud crystallized.
The beginning work was unguided, however, as the intention was to
run the MUD from the Dell Server in the geology computer lab in
Shideler Hall.
In preparation, I finished the setup of the Novel1 Netware
3.11 network for the lab, installing the cabling, setting up user
accounts, and configuring the system. At this point, I went in
search of the base MUD software, only to realize that my experience
was only with those running under a UNIX environment, not MS-DOS.
I reluctantly tabled plans for the MUD being based on the
Gondwananet system in Shideler and requested space on the Applied
Science R1SC/6000, phoenix, using AIX 3.0. With the account in
place, I searched the UseNet bulletin boards for source sites for
MUD software. I used ftp to acquire several versions of the base
software from various sites, but kept running into compiler
problems when trying to create the MUD driver software, as single
programs within the driver system would fail to compile.
Finally settling upon the MudOS driver software version 0.9.18
and the TMI-2 mudlib version 1.1.0, I was able to compile the
driver source after only minimal code changes under bsdcc. Further
work was needed to to change the runtime configuration files and
directory structure of the mudlib to prevent the driver from
crashing upon execution. A path error in the config file also
worked to prevent anyone from logging in for a while, but was
corrected. Currently, the driver is running smoothly, starting the
mudlib, preloading MUDwide daemons s as weather patterns, and
opening the mud for logins.
11. Inside the MUD, a s Viewpoint
A. Sample Internal View
It is at this point that most of the ethnographically oriented
papers all tend to feel the urge to abstract the exact same section
from one of Pave1 Curtis's papers upon MUDding and start writing as
if they were children's book authors 181, [22] . This will be
avoided in this text, and samples of possible, though not actual
environments, dialogue, and commands will be examined. To
paraphrase Curtis [lo], the strength of the mud system lies largely
in the intuitively obvious nature of ommands, as they appeal
to the user's real-world experience.
Here begins a sample login sess
.......................
$ telnet 134.53.3.230 3000
VM TCP/IP Telnet V2R2
Connecting to 134.53.3.230, port 3000
Using Line Mode...
Notes on using Telnet when in Line Mode:
- To hide Password, Hit PF3 or PF15
- To enter Telnet Command, Hit PF4-12, or PF16-24
(User hits return)
Welcome to PangaeaMud (version 0.9.1
Please use the name 'Guest' if you jus nt a look.
PangaeaMud is running the TMI-2 1.1 mudlib on MudOS 0.9.18
Current users: Archcoder, Takacs.
By what name do you wish to be known? (User types erich)
"Erich" is a new character.
Is this really the name you wish to use? (y(es) or n(o)): y
As you're logging on a new character name, we'll assume ...
(A non essential paragraph of text is displayed here)
Please enter a unique password for your character:
(User types password, but it does not appear on screen)
Please reenter your password to confirm: (User types it again)
Your gender can be male, female, neuter, or hermaphrodite.
Please enter your gender: (User enters male)
Please enter your email address (user@host): (user types in
boring@phoenix.aps.muohio.edu)
Please enter your real name: (User types Erich Boring)
(At this point, whatever startup messages for the mud appear, and
the user is placed at the default start environment.)
Welcome to PangaeaMud! PangaeaMud is a virtual environment
dedicated to the conceptual modeling of geologic processes and
mineral structures, the exchange of news and information of use to
those in the geologic scientific and educational fields. We
provide bulletin boards on various topics, secure mailing
facilities, tools for altering the constructs, and the ability to
create and alter your own constructs and models. Eventually, we
hope to include gopher capabilities, so you will be able to pull
information from anywhere in the net. To use the help facilities,
merely type help at your prompt.
Welcome to PangaeaMud!
** No new News to read **
:Press ENTER to continue:
This is the foyer of Banzai Research Laboratory's Geoscience
Division. To the west lies the Post Office, to the east is the
main conference room, south lies the divisional archives, reference
libraries and bulletin boards, and north leads out into the rest of
the building. Obvious exits are: north, south, east, west.
> (User types help)
* Basic Commands *
------ -------...-----I
Commands always begin with a v unless they are aliases.
There is a set of standard aliases fo mmon commands, type "alias
-globalw to see it.
Some useful commands t started are:
f aq
this displays the list of Frequently Asked Questions
say <msg> or
<msg>
your most basic communication command
go <direction> the most basic movement - moves in a direction
get <object> attempts to move an object to your inventory
drop <object> attempts to move an object to your surroundings
look used in many ways to examine your environment
alias, unalias used to set, change, and remove aliases
help <command> gives additional help on the command, if available
help <topic> gives more general help
help start
gives a more lengthy explanation of this mud
help topics gives a list of the help topics available
help commands list all the available commands
help he1 p
How to use the help command
(User decides to try a few commands.)
> say hmmmm.
Ok.
(Others in same room environ, if there are any, see:)
Erich says 'hmnunm.'
> who
...
There are 3 users connected.
EST time is Thu Dec 3 15:35:02 1993
...
Name Idle
...
Archcoder the system Admin 2 1m
[Takacs the Senior coder]
Erich
...
> south
/main/archives/rooml
This is the entry room to the archives, bulletin board areas, and
other reference areas of Banzai Research Labs Geoscience Division.
To the south lies a door through which you see a room filled with
books from floor to ceiling, while to the east, you see a hallway
lined with bulletin boards. Obvious exits: north, south, east.
As is readily apparent, in this case the environment conforms
to a building, and movement is accomplished by choosing a
direction, various types of communication actions are possible, and
objects model a realistic environment. Had the Erich icon
continued, he might have read or posted a note on a bulletin board,
chosen a reference book to look up data, possibly even created new
rooms or objects to place therein to expand the world of the MUD.
Had he come across either of the other users, or both of them, they
may have engaged in conversation, passed data, or merely passed
each other by.
B. Why the PangaeaMud Environment?
By using a parser built to accept a variety of common
commands, a great deal of realistic modeling may be achieved,
whether for creating the consensual virtual space for user
interaction, or for the specific scientific work within the
environmental framework. In addition, the internal coding ability
allows the coder to create even more specialised parsers for use
with the models they create, whether an object like a microscope,
a room such as a mine shaft, or a metaclass like a mineral.
As has been mentioned, most research work is done on the type
of MUDS that employ the internal interpreted language, but
PangaeaMud retains the use of C externally and C++ internally, to
aid in ease of coding. All major changes to the virtual
environment are thus inserted into the system network in C, while
virtually everything that will be used directly or inherited only
locally is coded in the C++ variant LPC.
Rather than forcing each user to learn an entirely new
language in which to code, the power and versatility of C is
provided, along with an ease of portability, as the coder may work
on his/her own machine and then upload files to the confines of the
mud, instead of using the editor provided. C may not be a
universal language, but it is decidedly more common than such
artificial MUD languages as the interpreted language U, which must
be run through extra processing by the system.
As PangaeaMud will be created as a registration-required MUD,
users will be limited to those actively involved in the Geologic
community, screening out the casual user who might log on from
curiousity or just happened to find the Internet address. This
issue will be dealt with in more depth in the section on Security.
C. But Why MUD?
Empirical evidence suggests that benefits are possible by
interacting with others via computer as opposed to in person [7].
Nuances of expression and body language are stripped away,
requiring participants to be more precise in their language in
order to communicate effectively, yet other factors such as biases
based on prejudice are also able to be dismissed. Users feel freer
to express ideas they might not in personal contact, as if the
computer provides a shield from contempt [28].
To an extent, this is because a level of anonymity is provided
by the system [23]. The user, once registered, may choose almost
any name or description for the personal icon, and only the system
administrator must know who that user actually is. No one need
know what gender, what race, or what beliefs he or she holds. The
user alone controls the level of personal data he/she allows others
to know, setting the stage for impartial interaction in which only
the important information about a problem will be considered, not
who might have posed it, although most users are sufficiently self -
assured to actually state their gender [27].
D. Embedded MUD Features
MUD software usually comes with several useful features
already coded: e.g. real-time communication between users, mail
facilities, and security features. A line editor is provided for
coding, and file transfer and remote login abilities are sometimes
provided. The base PangaeaMud software provides all but file
transfer, allowing the administration to decide the file transfer
protocol choice.
1. Communication
Communication may be achieved within the MUD in a number of
ways. Besides a variety of commands that mirror verbal
communication, a "channel" system allows users to receive messages
about a given topic much as if they were sitting with a bank of
radio receivers. Both individuals and environments may be set to
"muffled" so that private conversations or conferences may be
conducted free of distractions.
Several caveats must be provided at this point. First, a
number of the communication commands can simulate anonymous
messages or even communiques from users other than those of the
sender, and thus their usage is logged so as to prevent spurious
messages. Also, gwiz and interwiz, two of the channels, are links
to a network of other MUDS and are to be sparingly used as they
consume an inordinate amount of CPU time and Internet resources.
A list of real-time communication commands and examples of their
use may be found in Appendix B [33].
A mailer is provided, so that secure communications may be
sent from user to user, whether or not the recipient is currently
active. The mailer uses a special subset of the ed line editor.
Once lines are entered, they may not be changed or deleted, though,
so a more expedient way to send notes is to enter the full ed mode,
create a note file, then copy it to the /open directory of the
recipient.
The mailer does allow copies to be kept of communiques after
they have been read though, as well as enabling copies to be sent
to multiple recipients, Muff led rooms are provided for explicit
use of the mailer, so that shouted messages elsewhere will not
interfere with the composition of communiques.
The other main mode of delayed communication is via bulletin
boards. Objects that function as realworld bulletin boards are
provided. Users may place and remove notes on them. Notes are
created in similar fashion to mail messages in an ed subset.
~ypically bulletin boards are open to all users. By placing
bulletin boards in virtual areas accessible only to certain icons,
their usage may be restricted.
2. MUD Security Features
MUD security is fairly unobtrusive from the user's viewpoint,
but nonetheless vital. First, passwords are required for
connection to the MUD, and are encrypted so that even the MUD
administrator does not know the individual user passwords. Next,
as the user enters the MUD, he enters into a hierarchy of
permissions which allow him to view filenames in directories, read,
write, or execute files, and clone copies of objects or copy the
code directly. Either the adminstrator or the programmer
responsible for a given domain, such as driver maintenance or
mudlib coding (creating rooms, objects, and commands), will decide
what level of permissions are suitable for each user, depending on
his or her skills and interests.
111. The Coder's Viewpoint
Once the user decides that the current state of PangaeaMud
does not fully satisfy his needs, he may either ask one of the
other coders to implement a virtual modeling tool for him or code
it himself. This section is geared towards the user who wishes to
realize the full utility of the system by coding specific tools to
manipulate, retrieve or store data. A brief description of C and
C++, object oriented programming, and object design is followed by
detailed security information and coding specific to the PangaeaMud
project .
A. The Utility of C and C+S
The C family of languages is well suited to the design of
object oriented work, and thus such offshoots as object databases
and artificial intelligence work [19]. PangaeaMud driver code is
written in C, and contains the source code to utilize the C++
variant LPC that internal coding is performed in, giving the full
power of C as well as the added features of LPC to the users who
decide to create their own modeling tools or A1 systems within the
MUD.
The way in which C can be used to represent and store data
under an object oriented framework provides the basis upon which
LPC, with its built in message passing, parsing, and file handling
functions, allows users to code highly powerful object interfaces
with relative ease.
B, Object Orientation
A thumbnail sketch of the tenets and concepts of object
orientation and their use by the MUD is in order at this point.
Object orientation is still a bit of a buzzword, but a number of
key features have come to be accepted as prerequisites for a system
to be considered object oriented.
The object itself is at the root of the paradigm. An object
is a variable or set of related variables and associated operations
that correspond to either a real object or an abstraction, and may
be made up of sets of other objects [12]. The object is a way to
encapsulate data, presenting the user with an interface that shows
only the information relevant to his/her needs, much in the same
the olfactory system works. Each interface site has a certain
logical shape, as it were, and only those objects with congruent
interfaces can trigger data interchange.
Objects come in several forms. At the highest level is the
metaclass object, (In PangaeaMud most of these objects reside in
the /std directory.) The metaclass may be viewed as an abstract
data types or as a base upon which to build other objects. Thus,
the mineral metaclass object, which corresponds to no actual
mineral but which has attributes common to all minerals, is found
here. Likewise the object metaclass object is in the /std
directory.
A class object, for example, might be the object code for
gold. It takes on common features of minerals, such as the ability
to leave a streak, but also has its own specific attributes, such
as being a malleable metal.
-
At the low end of the spectrum he individual instance of
an object, which has its own set of iable attributes that may
change without effecting changes on the classes or metaclasses it
is derived from. Thus, a copy of the gold class object might be
brought into existance via the "clone" command, and then could be
deformed when the ' fractured' flag is set. As long as the instance
is in existence, it will remain 'fractured', yet neither the class
nor metaclass objects will be changed. This behaviour allows
coders to update their code interactively without need for
recompiling the entire system.
As object oriented systems allow for inheritance, where class
objects take common attributes from higher level class objects, it
can be seen that the object-oriented structure is typically
hierarchical, with class objects inheriting features frommetaclass
objects, and individual instances inheriting attributes from class
objects.
C. Object Design
Once the ideas of the object oriented paradigm are
assimilated, object design becomes fairly simple within the MUD
framework. Coders have to decide which of several ways to present
and access data depending on the access they wish to allow others.
The driver software, which contains LPC function libraries, data
comunication software, and file handling tools is usually left
unchanged. The base mudlib software however, is modifiable even
when the environment is running, and is modular for extensibility.
Typically, the coder will choose to work either with command
functions such as those found in the /cmds directory and its
subdirectories, or to design object metaclasses, classes, and
instances. If a command is created or modified, it becomes
available to a subset of the users and provides one more interface
site between the set of users and subsets of other object types as
specified [29]. If matching interface sites do not already exist
or are not added to other objects, responses return null or false
values.
If the coder decides to work with classes of objects, helshe
will generally need to inherit the OBJECT superclass, then design
his or her own metaclass and work downward. The main metaclass
objects are standard features of any MUD standard code library, and
object design entails users first deciding which, if any, major
metaclass most nearly suits the need, then altering a copy of the
selected metaclass to create two additional files, a standard
metaclass file and the individual instance of the metaclass.
Additional instances may be created including or inheriting
data from the metaclasses as needed. The instances are then copied
into the Active Object database as needed. Two examples may be
found later in the section on PangaeaMud specific code, the design
of minerals and the streak plate, a simple testing tool to extract
data from the mineral instances.
D. Security and the Coder
Taking the step into coding, the user needs to be more fully
cognizant of the various aspects of MUD security. Two files
control the various levels of access within the MUD. From the
mudlib directory (tmi2lib-1.1) they are /adm/etc/groups and
/adm/etc/access. In the groups file are sets which have various
levels of permissions, into which users may be sponsored. The
access file then specifies which directories each group has read
and/or write permissions to.
Another aspect of security is that a number of commands are
level dependent, and users will only have the directories in which
these commands reside added to their command path upon promotion to
the appropriate level. Virtually all of the powerful user commands
will open the access files to check for a user's permissions before
executing [33].
The hierarchy of coders starts with the admins, those who have
root access to the system and are assumed to have login
capabilities to the root account. Next come those archcoders who
have control over and responsibility for specific domains within
the game. Only these two top levels of coders may promote lower
level users to coding status within the game. Several lower levels
of coders exist, each having slightly fewer abilities than the
last. At all levels of coding, a specific domain should be
assigned, so that the chain of command is clear, though nothing
stops any coder from coding for any domain. As a final note, all
domains fall under the /d directory and each coder is assigned a
coding workspace under the /u directory in the subdirectory that
matches the initial of their chosen name.
E. PangaeaMud Specifications
Code changes specific to PangaeaMud are enumerated in Appendix
A. This section will go over the types of changes made to the
system, point out difficulties with the database architecture, and
examine several pieces of code in detail with an eye to design and
function.
1. Cosmetic Changes
The TMI-2 (The MUD Institute I1 UD where LPC and coding
design are taught and online technica ort for the MudOS driver
and TMI-2 mudlib is provided.) des a limited number of
virtual environments, several extraction tools, some
autodaemons for handling various complex tasks such as logins and
weather control, and data directories and files. In the course of
working up PangaeaMud, one set of changes was merely altering the
appearance of the basic rooms provided and attaching the specific
rooms created for 'Banzai Research Laboratories', the starting area
created for the users of the geologic research facilities. These
files are generally to be found in the /d/~ooland directory, as
more importance was attached to creating the basic geologic
modelling tools than to renaming directories or moving files.
2. Functional Changes
Slightly more serious changes eeded in several places to
aid indirectly in changing the MUD basic adventure game into
a more useful environment for social interaction and research.
The first type of these changes was that needed to set up the
software to run on the RISC/6000 platform. These were limited to
minor changes to /src/regexp.c to allow correct compilation and
changes to /src/Makefile and /src/config.h to properly configure
the driver software to the system, and the two runtime configure
files, /etc/config.~angaea~ud and /bin/~angaeaMud.info.
Further functional changes were made for a variety of reasons.
Site accesses were altered, messages displayed to incoming users
changed, and weather and time modelling information altered.
One specific problem with the database structure of this
system, as well as object oriented databases in general, is the
difficulty of establishing the set of all instances of an attribute
of a given class. The MUD software operates in a way such that one
can only query instances of a given object class.
Thus, in order to provide an answer to the question 'Which
minerals are in the Isometric crystal system?' for instance, one
can only give an answer if an active copy of each and every mineral
exists in the Active Object database, and have a coded object that
will run through all of the instances of the minerals one after the
other, checking the "system" attribute. (This actually is
workable, since the set of all minerals only runs to around 3500
instances. This code would work poorly on larger databases.)
3. Geologic Modelling Changes
A number of files and directories were created or altered for
the specific purpose of making a base environment for the geologic
users of PangaeaMud. In general, these files provide rooms,
commands, example mineral objects and a selection of tools to
extract data from the mineral objects or alter data on specific
instances of the minerals.
The previous example of the user within the system will be
continued here to illustrate the creation of an object and show how
the system allows one to compile individual objects and update code
without affecting the rest of the system. The example following
assumes the user has been promoted to coding level and is logged on
already, working in his user directory /u/e/erich.
> cp bandages.~ /u/e/erich
Cp: /obj/tools/bandages.c copied to /u/e/erich/bandages.c
> cd /u/e/erich
> 1s
1 bandages.~ 1 workroom.^
> mv bandages-c streakp1ate.c
Mv: /u/e/erich/bandages.c moved to /u/e/erich/streakplate.c
> 1s
1 streakp1ate.c 1 workroom.^
> ed streakp1ate.c
Editing: /u/e/erich/streakplate.c
:1,5p
// bandage.^
// This is a bandage which you can use on a player for healing.
// MobydickeTMI-2, 10-27-92
As the point of this example is not to show all the mechanics
of the online line editor, the actual editing of the new file will
be skipped. The code for the streakplate follows, with comments
inserted, after which the example continues.
// streakp1ate.c
// A ceramic streak plate.
// written 11-12-93, Erich
I/ # includes in 0 are in /include, otherwise they are specified
// by full pathname, such as "/u/e/erich/strk.hW
#include <mudlib.h>
// OBJECT is specified in /include/mudlib.h
inherit OBJECT;
// this function sets the various properties of the object.
void create() {
// descriptions of the object.
set ("short", "a ceramic streak plate") ;
set("long", "This is a small square of unglazed porcelain."+
"
You suspect you could test\nthe color of a mineralrs"+
"
streak by typing streak <mineral>.\nW);
// a list of names the object can be identified with.
set("idU, ({ "plate","streakplate","porcelain")]);
// holdover from bandage.^, part of the economy included in the
// mudlib,
set("value", ({ 5, "silver")));
// Users can only carry so much.
set("massU, 5);
set("bulk", 5);
J
// this allows for specific commands to be applied to the object.
void init() {
add - action("streak", "streak");
}
// the meat of the code.
int streak (string name) (
// declarations of objects, strings, integers, floats, etc.
object target;
int strk;
// Various ways for the function to fail.
if(!name) {
notify-fail ("Test the streak color of what?\nU);
return 0;)
target = present(name,this-player());
if(!target) {
notify-fail ("I donrt see that here.\nW);
return 0;)
if (living (target)) {
notify-fail ("Kind of hard to do a streak test on"+
" living things.\nU);
return 0;)
// If the object is an unknown mineral, use this code.
if(name == "mineral") {
return 1; }
// set strk variable from the "streak" attribute of the mineral
// being tested.
strk = target->query("streak");
if (l strk) {
notify-fail ("You can't test that!\nW);
return 0; }
// What to do if you actually have a mineral being tested.
// write is the message displated to the user of the plate.
write("You scrape the mineral across the porcelain "c
"square.\nW);
// say is what others in the virtual room see.
say(this - player()->query("cap_name")S"tests a piece of "f
name+" on a streak plate.\nM);
// some minerals' streaks aren't listed in the encyclopedia.
if(strk == "x" 1 I strk == "unknown") {
write("Hmmm... You still aren't sure.\nN);
return 1;)
write("The "+name+" leaves a "Sstrk+" streak on thew+
" plate.\nU);
return 1;)
..
Back to the example from inside the system.
> clone streakplate
Cloning: /u/e/erich/streakplate.c to /std/user#275.
> i
A ceramic streak plate
> 1 at plate
This is a small square of unglazed porcelain. You suspect you
could test the color of a mineral's streak by typing streak
<mineral>.
> clone /obj/minerals/a/abhurite
Cloning: /obj/minerals/a/abhurite.c to /std/user#275.
> i
A ceramic streak plate
A crystal of abhurite
> streak abhurite
You scrape the mineral across the porcelain square.
The abhurite leaves a white streak on the plate.
>
...
The streak plate is one of several fairly simple tools used to
discover information about a mineral. In reality, the streak color
is the color of the powdered form of the mineral. On the mud, the
streak color is a property set in the mineral object from data
taken from several texts of mineralogic information [ll], ~131,
[181, [261.
The level of information available about each mineral is
dependent upon several factors. The first is whether or not the
user is of coder level. At that level and above, the command
minstat [mineral] is available. This command, found in
/cmds/wiz/ minstat.~, allows virtually all of the information
present about the mineral to be viewed. The command code includes
some basic metaknowledge, and so only displays attributes pertinent
to the instance of the mineral. As an example, minstat abhurite
would produce the following.
+-- +
Name : abhurite
Formula : Sn30(OH)2C12
Crystal System: Trigonal
Class : b3m, 3m, or 32
Space Group : Rb3m, R3m, or R32
: 21
... ---
+
LATTICE CONSTANTS
..
I
+
a : 10.0175
c : 44.014
-_-----_-___------------------.-----------.- ---------------
I
---+
3 STRONGEST DIFFRACTION LINES I
---------_--------------------------------.------- -----------+
2.5313 (loo), 2.8915 (70), 4.139 (50)
----------------_-----------------------------.--------------
I
4-
,
The minstat command knows that Trigonal class minerals only
have a and c lattice constants and does not display space for b,
alpha, beta, or gamma constants. Similar knowledge is inherent in
the optics section, where uniaxial minerals have one set of
attributes and biaxial minerals another set of properties.
Coder level users may also use the unixlike commands to go to
the directory the particular mineral is stored in and scan the code
for the base mineral object directly, picking up any data stored in
comments in the mineral code.
The next way users may find information on the minerals is
through the use of a similar command, index [mineral], which is
essentially the same, but available to all users, if they are in a
room which has a special flag set. With this flag set, the room
acts as if a file of 3"x5" cards with information on the minerals
is present. For self or outside testing, the flag can be changed
so that the card file is unavailable.
The final level of gathering information on specific minerals
is by utilizing the coded modelling tools on instances of the
minerals. Tools already coded as examples include the streak
plate, a rock hammer, a lamp, a Mohs' hardness scale, and a
Cleavage : none
Fracture : hackly
Hardness : 2
Calc. Density : 4.34
Meas. Density : 4.29
..
OPTICS : uniaxial
Sign : +
Epsilon : -2.11
Omega : 2.06
Twinning : on (0001)
polarizing microscope.
The streak plate provides streak information, the hammer gives
data on parting, fracture, and cleavage, the lamp gives relative
opacity, the scale gives hardness, and the polarizing microscope
4-
+-- t
gives optical information such as axiality, indices of refraction
and di- or pleochroism.
Due to the flexible nature of LPC, the metaclass typically
contains any and all possible types of information that any of its
subclasses will inherit, with the actual instances of each
attribute initialized to a null value of some sort. Each class
object then instantiates the attribute data slots, and each
instance of the object in the active database queries the class
object as to potential attributes, and maintains a set of the
current state of the instantiated attributes of the unique copy of
the object along with an identifier, the UID. For an example of a
class object of the metaclass mineral, abhurite is presented below.
Notes on the code that are not actually in the code are preceeded
by a %.
// /obj/minerals/a/abhurite.c
// Written: 11-12-93, Erich
% Here we inherit the metaclass.
inherit "/std/mineralW;
create() (
set("nameW, "abhurite");
set("longW. "A tiny twinned crystal. It is colorless and "t
"transparent, with\nopalescent luster.\nW);
set("fracW, "It has fractured in hackly fashion.\nU);
set("short", "a colorless twinned crystal");
% messages may address the object by any name in the list.
set("idW, (("crystal", "abhurite")));
set("habitW, "Platy, hexagonal 1.5mm twinned crystals");
set("mode", "As blisterlike growths on tin ingots from a "t
"shipwreck in the Red Sea.");
% The set command does not need to specify the type of the
% variable instance of the attribute, routines that call the
% attribute will specify type. Thus we can set floating point
% integers here either inside or outside of " "Is.
set("diffl", "2.5313");
set("diff2", "2.8915") ;
% if so desired, this integer could also be set as "70"
set("strdiff2", 70);
set("diff3", "4.139");
set("strdiff3", 50);
set("cleavage", "none") ;
set("fracturen, "hackly");
set("hardness", It2" ;
set("maincolor", "colorless");
set("colors", "none") ;
set("streakU, "white") ;
set("luster", "opalescent");
set ("density", "4.29") ;
set("dens-calc", 1'4.34");
set("formula", "Sn30(OH)2C12");
set("opacity", "transparent") ;
set("axial", "uniaxial");
set ("opticsignN , 4- i
set("epsilon", It-2. llft) ;
set("omega", "2.06");
set("spacegroup", "Rb3m, R3m, or R32");
set("system", "Trigonal");
set ('t~la~~n , "b3m, 3m, or 32");
set("twinningW, "on (0001)");
set("forms", "(0001) and (Olb15)");
% the metaclass has many more set commands, notably "lat b",
% "lat-alpha", and so on, but this class does not need &ern,
% so we ignore them.
set("1at-a", "10.0175");
set("1at c"! "44.014");
set("uni~cell", 21);
Any of the "set" variables may be accessed, including those
not specified in the class instance, in which case the database
will check the metaclass and provide whatever it finds there,
usually a null value. An exception for the mineral metaclass is
the "strdiffl" setting, which is always 100 and is set to 100 in
the actual metaclass object. Additional settings may be added
interactively to the instances of the object, but unless a coding
object that can modify files is used, these settings will not be
added to the class object code.
IV. Epilogue
PangaeaMud has come a long way since the idea first came to
me, yet much remains to be done. Hopefully, the extensible nature
of the LPC environment will attract users who will add their own
expertise, making the system ever more powerful. Much work remains
to be done to branch out the system to fully create the vision I
have of PangaeaMud as a workspace and meetingplace for all kinds of
geologists, not just those of a mineralogic bent.
I have learned much in the time since I began this project,
though most of what I learned was about myself or about the bare
bones of portability of code and hardware troubles, rather than
about modelling algorithms, as I had expected. What took the most
time was not the actual coding, but finding the small
idiosyncrasies of the various file transfer protocols, compilers,
and operating systems with which i worked.
I sat idle for two months trying to get the base software to
compile, and finally only got it to work after dipping into Unix
man pages, changing a program within the driver code, and trying 3
separate compilers. Getting from compiled code to enabling telnet
access, even from the host machine on the root account, took
another two months and the help of a gentleman in Scotland. LPC
coding, on the other hand, was so straight forward I could
literally code as fast as I could type.
V. Acknowledgements
I would like to thank the following people for having made
this project possible through their support and encouragement.
Dr. James Kiper, for allowing me to choose this topic, keeping
me moving when I got sluggish, and reading and rereading this paper
as I repaired it.
Dr. Valerie Cross for giving me the original incentive to
choose this topic while working on my term paper for her advanced
database course and for correcting my misuse of the Queen's
English.
Dr. Marcia Bjornerud, for putting up with my continual
lateness throughout this work and other projects I worked on for
her.
Robert Pickering and Kent Covert, for providing technical
support in dealing with system problems.
The staff of The Mud Institute 11, for providing technical
support for the driver and mudlib software.
Mark Takacs, for providing extensive research material from
his thesis and his contacts at the Human Interface Technologies
Labs at Washington State University.
My parents, Lawrence and Joan Boring, for far too much to
mention in a single sentence.
Dan Myers, Scott McCall, and the rest of the gang down at
Banzai Research Laboratories, for calling me up all the time when
I'm playing games and telling me to work on my thesis instead.
And especially Jonette Alexander, for giving me a reason to
want to finish in timely fashion.
VI. References
[I] Johan Andersson (d8andjo@dtek.chalmers.se). The design &
implementation of lpmud: Implications for vr technology.
Technical Report R-91-4, Human Interface Technology Lab -
Seattle, Waf 1991.
[2] Johan Andersson (d8andjo@dtek.chalmers.se). Mive - multi
interfaced virtual environments. Technical Report R-92-7,
Human Interface Technology Lab - Seattle, Wa, 1991.
[3] Dr. Richard Bartle. Interactive multi-user computer games.
Technical report, British Telcom plc, December 1990.
Electronic text available via anonymous ftp from
beta.xerox.com :/pub/MOO/papers/mudreport.ps.Z.
E~I Benford et al. From rooms to cyberspace: Models of
interaction in large virtual computer spaces. Interacting
with Computers, 1993. (a Butterworth-Heinmann journal).
[5]
Benford and Fahlen. A spatial model of interaction in large
virtual environments. In Proceedings of 3rd European
Conference on CSCW. milan, September 1993. (at press)
[GI Carl Brown (cbrown@netcom.com). Micromuse history.
Electronic Text available via anonymous ftp from 18.43.0.102
:muse/info/Muse.History, October 1992.
[71 Amy Bruckman (asbemedia 1ab.media.mit.edu). Identity
workshop: Emergent social and psychological phenomena in
text-based virtual reality. Technical report, MIT Media
Laboratory, April 1992, Electronic Text available via
anonymous f tp from beta.xerox.com
:/pub/MOO/papers/identity-workshop.ps.~.
[8] Eva-Lise Carlstrom. Better living through language: The
communicative implication of a text-only virtual
environment, or, welcome to lambdmoo! Technical report,
Grinnell College, May 1992. Electronic document available
via anonymous ftp from beta.xerox.com
:/pub/~O~/papers/communicative~txt.Z.
191 Pavel Curtis. Mudding: Social phenomena in text-based virtual
realities. Technical report, Xerox PARC, 1992. Electronic
document available via anonymous ftp from beta.xerox.com
:/pub/MOO/papers/DIAC92.ps.Z.
(101 Pavel Curtis and David A. Nichols. Muds grow up: Social
virtual reality in the real world. Technical report, Xerox
PARC, January 1993. Electronic document available via
anonymous f t P from beta.xerox.com
:/pub/MOO/papers/MudsGrow~p.ps.Z.
Ell] Edward Salisbury Dana. A Textbook of Mineralogy. 4th edition.
William Ford, ed. John Wiley and Sons, Inc., November 1948.
[I21 C. J. Date. An Introduction to Database Systems, 5th ed,
Volume I. Addison Wesley Publishing, Reading, Mass. 1991.
[13] W. A. Deer, R. A. Howie, and J. Zussman. An Introduction to
the Rock Forming Minerals, Commonwealth Printing, Ltd, Hong
Kong, 1983.
[14] Randal F. Farmer and Chip Morningstar. The lessons of
lucasfilm's habitat. Michael Benedikt, editor of Cyberspace:
First Steps. MIT Press, Cambridge, MA, 1992.
[IS] Arthur M. Glenberg and William E. Langston. Comprehension of
illustrated text: Pictures help to build mental models.
Journal of Memory and Language, 31:129-151, 1992.
[16] Erik A. Kay. Mire: A multi-user information retrieval
environment. Technical report, Massachusetts Institute of
Technology, May 1992. Electronic full-text available via
anonymous f tp from 1ysator.liu.se
:/pub/lpmud/misc/thesis.ps.Z.
[17] Kevin Kelly and Howard Rheingold. The dragon ate my
homework. Wired, 1(3):68-73, July 1993.
[18] Cornelis Xlein and Cornelius Hurlbut, Jr. Manual of
Mineralogy. 20th ed. John Wiley & Sons, New York, 1985.
[19] George Luger and William Stubblefield. Artificial intelligence
- Structures and strategies for complex problem solving, 2nd
ed. Benjamin Cummings Publishing Co., 1993. p209
[20] Masinter and Ostom. Collaborative information retrieval:
Gopher from moo. In Proceedings of INET, 1993.
[21] Tony Mason John R. Levine and Doug Brown. lex & yacc.
O'Reilly & Associates, Inc., 2nd edition, 1992.
[22] Scott Moir. Rants & raves - muds. Wired, l(4) : 17, September
1993.
[23] Gerald M. Phillips (GMP@PSUVM.bitnet). Implicit philosophy.
PSYCOLOQUY, 3(30), Tue June 2 1992. Electronic full-text
available via anonymous ftp from princeton.edu
:/pub/harnad/psyc.92.3.30.space.2.phillips.
[24] C. C. Presson and B. R. Roepnack. Multiple mental models.
PSYCOLOQUY, 3(65), Wed December 16 1992. Electronic
full-text available via anonymous ftp from princeton.edu
:/pub/harnad/psyc.92.3.65.space.l2.presson.
[25] Elizabeth M. Reid (emr@munan.ee.mu.oz.au), Electropolis:
Communication and community on internet relay chat.
Technical report, University of Melbourne, 1991. Honor's
thesis for Dept of History. Electronic document available
via anonymous f tp from beta.xerox.com
:/pub/~00/papers/electropolis.ps.Z.
[26] Roberts, Campbell, & Rapp, The Encyclopaedia of Mineralogy,
2nd. Edition
[27] Michael S. Rosenberg (msr@casbah.acns.nwu.edu). Virtual
reality: Reflections of life, dreams, and technology - an
ethnography of a computer society. Electronic document
available via anonymous ftp from beta.xerox.com
:/pub/MOO/papers/ethnography.txt.~, March 1992.
[28] Jill Serpentelli. Conversational structure and personality
correlates of electronic communication. Technical report,
Haverford College, 1992. Electronic document available via
anonymous f t P from beta.xerox.com
:/pub/MOO/papers/conv-structure.txt.Z.
[29] Ben Shneiderman. Designing the User Interface: Strategies
for Effective Human- Computer Interaction. Addison-Wesley
Publishing Company, 2nd edition, 1992.
[30] Jennifer Smith. Frequently asked questions 1/3: Muds and
mudding. Electronic text distributed via USENET group
rec.games.mud.announce, July 1993.
[31] Jennifer Smith. Frequently asked questions 2/3: Mud clients
and servers. Electronic text distributed via USENET group
rec.games.mud.announce, July 1993.
[32] Mark Takacs (tak@hitl.washington.edu). Muds as groupware.
Class paper, December 1991.
[33] TMI-2 Internal documentation for driver, mudlib, 1993.
[34] UNIX development team. Unix man pages, 1991.
VII. Appendices
A. Code Segments Changed
This is a list of code segments/programs I had to write or
change from the base code. * indicates minor changes, ** indicates
major changes, and no marker indicates I wrote at least 90% of the
segment. The list is ordered by directory. All listings may be
presumed to be preceeded by /usr/users/boring/~ud~S 0.9.18/, the
basic driver directory, and all the changes below themudlib change
line are preceeded by /usr/users/boring/MudOS~0.9.18/tmi2lib~l.l/.
driver changes
(src is the precompiled driver code)
src/Makefile *
src/config.h *
src/regexp.c *
(These two contain runtime configuration data.)
etc/config.PangaeaMud **
bin/PangaeaMud.info **
mudlib changes
(adm/etc is used by various mudwide daemons.)
adm/etc/access.allow *
adm/etc/approved-sites *
adm/etc/banishes.o **
adm/etc/dsrtweat.data
adm/etc/wintweat.data
adm/etc/yeardates.data *
adm/news/faq **
adm/news/help
adm/news/news
adm/news/nplayer intro
adm/news/nplayer>ews
adm/news/welcome
cmds/wiz/~minstat.c
cmds/std/- index.^
(d/Banzai/ is the rooms directory for most of my rooms.)
d/Banzai/archbull.c
d/~anzai/archives.c
d/Banzai/archlibs.c
d/Banzai/comprooml.c
d/~anzai/confroom.c *
d/Banzai/foyer.c
d/Banzai/labfoyer.c
d/Banzai/labl.c
d/Banzai/mainboard.c *
d/Banzai/path.c
d/Banzai/postoffc.c *
d/~anzai/upstairs.c
d/Fooland/ * (Minor changes to all files in the directory.)
d/grid/rooms/ * (Minor changes to all 11 files in dir.)
d/Oxford/ * (Minor changes to all files.)
data/adm/daemons/emoted/Root.o *
doc/wizhelp/new-wiz *
include/body.h *
include/config.h *
include/weather-d.h *
objfkenda1l.c
(obj/gtools is the directory for geologic data extraction
tools.)
obj/gtools/diction.c
obj/gtools/hamer.c
obj/gtools/hardtest.c
obj/gtools/lamp.c
obj/gtools/microscope.c (unfinished)
obj/gtools/streakplate.c
(obj/minerals and subdirectories are all the minerals
directories, only the first is explicitly listed.)
obj/minerals/a/abelsonite.c
obj/minerals/a/abernathyite.c
obj/minerals/a/abhurite.c
obj/minerals/a/acanthite.c
obj/minerals/a/acetamide.c
obj/minerals/a/achavalite.c
obj/minerals/a/actinolite.c
obj/minerals/a/adamite.c
obj/minerals/a/adelite.c
obj/minerals/a/admontite.c
obj/minerals/a/aegirine.c
obj/minerals/a/aenigmatite.c
obj/minerals/a/aerugite.c
obj/minerals/a/aeschynite.c
obj/minerals/a/aeschynite-nd.c
obj/minerals/a/aeschynite-y.c
obj/minerals/a/afghanite.c
obj/minerals/a/afwillite.c
obj/minerals/a/agardite-1a.c
obj/minerals/a/agardite-y.c
obj/minerals/a/agrellite.c
obj/minerals/a/agrinierite.c
obj/minerals/a/aguilarite.c
obj/minerals/a/ahlfeIdite.c
obj/minerals/a/aikinite.c
obj/minerals/a/ajoite.c
obj/minerals/a/akaganeite.c
obj/minerals/a/akatoreite.c
obj/minerals/a/akdalaite.c
obj/minerals/a/akermanite.c
obj/minerals/a/akrochordite.c
obj/minerals/a/aksaite.c
abj/minerals/a/aktashite.c
obj/minerals/a/alabandite.c
obj/minerals/a/alamosite.c
obj/minerals/a/aldermanite.c
obj/minerals/a/aluminum.c
obj/minerals/a/antimony.c
obj/minerals/a/arsenic.c
obj/minerals/base.c
obj/minerals/rnin/ (all) (More minerals)
(std is where metaclasses SHOULD go, though not all have.)
std/food.c
std/mineral.c
(text is a directory for all pl
actual "code" in here.)
text/avail
text/classes
text /mohs
text/scopel
text/defn/ (all) (Individual def ions for specific geologic
terms.)
text/ext/indx.dic
text/ext/titlepg.dic
u/e/erich/workroom.c **
B. Real-time Communication Commands
echo <msg> - Everyone in the same virtual location as the sender
receives the exact text of the message and nothing more.
s echo A hammer appears.
(Everyone in room sees:)
A hammer appears.
echoall <msg> - Everyone on the mud receives exactly the text of
the message and nothing more.
> echoall A landslide occurs.
(Everyone logged in sees:)
A landslide occurs.
echoto <name> <msg> - The person named receives the exact text of
the message and nothing more. The recipient may be anywhere in the
mud.
> echoto takacs Your takeout order is here.
(Takacs sees:)
Your takeout order is here.
emote <msg> - Everyone in the room receives the sender's name with
the message of the text appended.
(erich types:)
> emote studies the data.
(Everyone in room sees:)
Erich studies the data.
emoteto <name> <msg> - The person named receives the sender's name
with the text of the message appended. The recipient may be
anywhere on the mud.
(erich types:)
> emoteto takacs would like to speak with you.
(Takacs sees:)
Erich would like to speak with you.
say <msg> - The equivalent of real world speech, all of those in
the same virtual room will receive the sender's name and the word
says with the text of the message appended.
(erich types:
> say is anyone here a mineralogist?
(Everyone in room sees:)
Erich says 'is anyone here a mineralogist?'
shout <msg> - A broadcast message, everyone within the mud will
receive the sender's name and the word shouts with the message
appended except those who are specifically muffled to avoid shouts.
(erich types:)
> shout Can someone give me a hand here?
(Everyone not muffled sees:)
(C) Erich shouts 'Can someone give me a hand here?'
tell <name> <msg> - Rather like telepathy of popular fiction, the
message is received only by the person of the name used, no matter
where sender and recipient icons are located.
(erich types:)
> tell takacs Hey there!
(Takacs sees: 1
Erich tells you: Hey there!
whisper <name> <msg> - Similar to tell, but the recipient must be
in the same virtual location as the sender.
(erich types:)
> whisper takacs excuse me, but...
(Takacs sees (If he is in same room):)
Erich whispers to you 'excuse me, but...'
Communication may also be achieved by means of channels to
which specific users are attuned, depending on their interests.
Users may sign up for any number of these channels, which act as
semidirectional shouts. All other users tuned to the specific
channel will receive the message spoken over the channel.
(erich types:)
eiz anyone out there?
(Anyone attuned to the eiz channel sees:)
Erich eizzes: anyone out there?
(erich types:)
$iz hello?
(This message is received by anyone tuned to this channel on any
mud attached to the UDP mud network. To transmit the same message
to anyone on the TCP network, one would type interwiz hello?)
Erich@pangaeamud gwizzes: hello?
(for TCP substitute interwizzes for gwizzes)

