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Abstract

This paper presents a neural network modeling approach to forecast electron concentration distributions in the 150-600 km alti-
tude range above Arecibo, Puerto Rico. The neural network was trained using incoherent scatter radar data collected at the Arecibo
Observatory during the past two decades, as well as the Kp geomagnetic index provided by the National Space Science Data Center.
The data set covered nearly two solar cycles, allowing the neural network to model daily, seasonal, and solar cycle variations of
upper atmospheric parameter distributions. Two types of neural network architectures, feedforward and Elman recurrent, are used
in this study. Topics discussed include the network design, training strategy, data analysis, as well as preliminary testing results of

the networks on electron concentration distributions.
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1. Introduction

This study focused on the application of the neural
networks for forecasting electron concentration profile
3 h in advance based on given local time and the Kp
geomagnetic index. There have been a number of studies
utilizing neural networks in a similar manner for upper
atmosphere parameter forecasting. Much of the research
has been concentrated on the forecasting of the critical
frequency of the F2 layer (f,F2). Several authors have
presented studies of 1-h-ahead predictions of the f F2
(Altinay et al., 1997; Cander et al., 1998; Wintoft and
Cander, 1999; Kumluca et al., 2000). Longer term (up
to 24 h) predictions have also been carried out recently.
Wintoft and Cander (2000) used a time-delay feedfor-
ward neural network with a back propagation learning
algorithm to forecast the f,F2 values 1-24 h in advance.
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Tulunay et al. (2000) used a model which involves spa-
tial variations as well as temporal variations for the fore-
casting of f,F2 up to 24 h in advance. The Tulunay and
Ozkaptan model used a traditional feedforward network
trained with the back-propagation algorithm. McKin-
nell and Poole (2001) used neural networks to produce
a bottomside electron density profile. They also showed
that neural networks are ideally suited tools to be used
in quantifying the variability of ionosphere parameters
under multivariate conditions. They demonstrated that
for a given input specification, neural networks can be
used to determine the range of expected parameter vari-
ations and to provide estimation for the unpredictable
portion of parameter variability.

These studies demonstrated that neural networks
provide a viable tool to study and model complex non-
linear phenomena characteristic of the ionosphere. The
existence of nearly two solar cycles of ionosphere elec-
tron concentration profiles collected by the Arecibo
Incoherent Scatter Radar (ISR) provided a rich set of
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data that can be used to train a network model. Electron
concentration profiles are functions of local time, sea-
sonal changes, and solar activity. The geomagnetic in-
dex Kp is selected as the input parameter that reflects
the seasonable and solar activity impact on the electron
concentration distributions.

Two different neural network models were created in
this project. One is the classical feedforward model. In
this model, the 24-h local time period is divided into
eight sections. Each section covers 3 h and has a corre-
sponding Kp index associated with it. These resulting
Kp indices serves as the eight inputs to the network.

Since each Kp index has a local time associated with
it, local time became an embedded input parameter. The
model output is a 15-element array that stores the elec-
tron concentration profile in the 150-600 km altitude
range with 30 m altitude resolution. Experimental elec-
tron concentration data collected by the Arecibo ISR
are used as training data for the network. The resulting
network model is then tested and validated using addi-
tional experimental data. We averaged our experimental
data profiles over a 3-h period to obtain a single profile.
Our initial effort had a target goal of accurate prediction
one step into the future, implying a prediction time of
3-h in advance.

An alternative model, the Elman recurrent model,
was also developed as a comparative measure of the
feedforward model. The Elman recurrent model is espe-
cially suitable for long-term forecasts that predict multi-
ple steps into the future based on current information.
Therefore, the Elman recurrent model will be the focus
of our subsequent studies. We did not anticipate the
Elman recurrent model would outperform the feedfor-
ward model for our single step prediction goal. Our test-
ing and validation results based on the two models as
shown in the following sections verify this.

MatlLab with the Neural Network Toolbox
(NNToolbox) add-on was utilized for the creation of
the neural networks in this project.

2. Feedforward and Elman recurrent neural network
model

Neural network architectures have been discussed in
detail in the literature (Hagan et al., 1996; Haykin,
1999). A brief overview of the feedforward and Elman
recurrent neural network models are provided here.

The feedforward neural network consists of an input
layer, a hidden layer, and an output layer. All input data
to the network are propagated through the layers from
the input, to the hidden, and finally to the output layer
without any feedback. Fig. 1 is a schematic of the feed-
forward model. Xyxp(?), Xgp(t — 1),...,Xxp(t —7) are
the Kp indices for the current time section and previous
seven time sections. n is the number of neurons.
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Fig. 1. Feedforward neural network architecture.

Ugc(t + 1) is a 15-element array that contains the elec-
tron concentration profile at the next time section (i.e.,
3 h later). A major advantage of the feedforward archi-
tecture is that it requires relatively low amounts of com-
puting processing time during training. This is valuable
when numerous simulations are necessary to evaluate a
neural network performance.

Fig. 2 shows the schematics of the Elman recurrent
model. The Elman recurrent model has an additional
feedback loop. In our study, the 15 output values for
a single electron concentration profile were used as the
feedback to serve as the additional inputs for forecasting
additional time steps into the future. Ugc(f +2),
Ugc(t + 3),...,Ugc(9 + 7) are the outputs representing
the electron concentration profiles at 6,9,...,21 h in
the future. This feedback connection allows the network
to possess short term memory. The short term memory
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Fig. 2. Elman recurrent neural network architecture.



2482 J.D. Martin et al. | Advances in Space Research 36 (2005) 2480-2485

allows for temporal pattern recognition over a time-
series data. The recurrent type of network is ideal for
temporally dependent data and for multi-step predic-
tions because of the recurrent connections that serve
as additional inputs to predict the subsequent time steps
in the future. Because of the more complex architecture
of the recurrent model, however, there is a significant in-
crease in training time compared with the feedforward
model.

A logistic activation function ¥, represented by Eq.
(1) below, was used in both the feedforward and Elman
recurrent models to apply a nonlinear connection be-
tween the input and output layers. This particular logis-
tic function was chosen because it is the one most
commonly used in a multilayered network. The variable
b represents the slope parameter of the activation func-
tion which determines the shape of the curve

1

i = e

()

3. Neural network training

Neural networks must be trained to map certain in-
put patterns to output profiles. A neural network be-
comes trained by adjusting the weights (also referred
to as free parameters) of the connections once these pat-
terns are established through error interpretation. There
are a variety of training algorithms that can be used to
adjust the free parameters. The back-propagation algo-
rithm is used in this project.

The back-propagation algorithm is an iterative learn-
ing rule which updates layer-to-layer weights based on
the actual neural network outputs’ deviation from a tar-
get. In each training cycle, or epoch, input data are fed
through the system while free parameters are held con-
stant. The outputs generated by the system are com-
pared with a set of target output data. Through each
epoch n of the training algorithm, the energy associated
with the output error signal for each neuron j is calcu-
lated by the following equation:

1 Output Neurons

Em=5 )

J=0

(t(n) = y;(m))?, 2)

where ¢ is the target signal and y is the actual system
output.

The induced local field v during training epoch 7 is
defined as:

Output Neurons

vi(n) = Z

Jj=0

03 (m)y,(n). (3)

E and v are used to calculate the local gradient ¢, which
determines the required direction of the changes in syn-
aptic weights (w)

0E(n)

5/ an(}’l) : (4)
Two parameters are critical for network performance,
the learning rate # and the momentum rate u. Both
parameters may vary between 0 and 1. The learning rate
is used to adjust the slope of the weight correction and it
determines how long it will take the algorithm to con-
verge to a minimum threshold root mean square
(RMS) error. If the learning rate is too small, it will take
the algorithm a relatively long time to converge. If the
learning rate is too large, it is possible that the algorithm
will diverge and never reach the threshold value. The
learning rate is determined through trial and error and
should be a reasonable combination of convergence
and relatively low processing time. The weight adjust-
ment calculations shown in Eq. (5) are used to update
the free parameters of the system during each epoch

O0E(n)
o dwyy(n)”

Aw;;(n) =

()

The momentum rate u takes into account the weight-
corrected magnitude and direction from the previous
and current epoch. If the error gradient continuously
moves toward the local minimum (i.e., the threshold va-
lue), the combination of the momentum term and the
learning rate will increase the slope of the error surface,
thereby accelerating its movement. If the error gradient
fluctuates and repeatedly changes direction, the momen-
tum term will help to smooth out these variations. With
the introduction of the momentum term, the weight cor-
rection equation becomes that shown in Eq. (6). As a
general rule of thump, a high momentum rate (>0.7)
should be used in conjuction with a low learning rate
(<0.3), and vice versa.

Awj(n) = noy; + uhawy(n —1). (6)

Another important consideration in training is the
selection of training data. A critical issue in data selec-
tion is the time coverage of the data set. It is essential
to select data that spans several days or weeks that
can result in a reasonably good generalization, but with
no overfitting. The training data must also contain sig-
nals whose parameters are representative of a wide
range of conditions. In our case, this means that the
Kp index associated with the training data must have
a range covering the normal geomagnetic condition, as
well as disturbed cases.

4. Testing, validation, and results

The completion of the training algorithm optimized
the synaptic weighted connections to establish reliable
relationships between the inputs and outputs. During
the testing and validation step, these free parameters
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are held constant while new inputs are fed to the net-
work to produce a series of outputs. These outputs are
then compared to a set of test data matching the actual
produced outputs. If the actual output deviates from the
target test set output above a threshold error value, the
training parameters need to be adjusted and the neural
network retrained.

In our testing, we varied learning rate and momen-
tum rate from 0 to 1 with different training data time
coverage (i.e., 3, 5, 10, 20, 50 days). Also, we varied
the architecture by analyzing how the number of hidden
neurons affected the accuracy of the networks.

The feedforward neural network’s performance was
evaluated based on over 10,000 automated simulations
with varied architecture, training parameters, and train-
ing data time coverage. Fig. 3 is an example error anal-
ysis of a feedforward network with a learning rate of
0.05, momentum rate of 0.1, and minimum, average,
and high error values over a set of varied hidden neu-
rons of 1-100.

The error values for a simulation run were calculated
by finding the average of the deviation of the target elec-
tron concentration value for a specific altitude (or out-
put neuron) j against the actual output over the
complete output electron concentration profile N. Our
analysis shown that the number of hidden neurons had
the largest effect on the error. With a fixed architecture,
but varying training parameters and training data hori-
zon, there was not a discernible pattern present to be
able to determine if the training parameters had as large
of an effect on the output error as did the number of hid-
den neurons.

Similar to that of the feedforward neural network,
the Elman recurrent model performance was based on
over 10,000 simulations with the same variation in archi-
tecture (number of hidden neurons) and training param-
eters. The error values were calculated in the same
manner as for the feedforward model. Fig. 4 is an exam-
ple result analysis of an Elman recurrent model with a
learning rate of 0.05, momentum rate of 0.1, and mini-

Error

Hidden neuron numbers

Fig. 3. Feedforward neural network min, avg, and max error vs.
hidden neuron numbers.

Hidden neuron numbers

Fig. 4. Elman recurrent neural network min, avg, and max error vs.
hidden neuron numbers.

mum, average and high error values over a set of varied
hidden neurons of 1-100. As with the feedforward
model, we found that the number of hidden neurons
had the largest effect on the system error. Direct com-
parison of Figs. 3 and 4 shows that the feedforward
model has better performance, especially with an archi-
tecture having a small number of hidden neurons. Sim-
ilar analysis was performed for additional training
horizons of 6, 10, 15 and 20 days. We found that under
every condition tested, the feedforward model is not
only simpler and requires less computing power, it also
provides more reliable results, if we are only interested
in forecasting one step into the future. Considering that
the inputs to the networks contains embedded time de-
lay information, for one-step-into-the-future prediction,
the history was already in the inputs. The additional
memory associated with the Elman model is not needed.

A number of simulations were performed in order to
determine the optimal training parameters, input data
training horizon, and number of hidden neurons. The
training parameters were held constant for 100 simula-
tions, while the hidden neurons were repeatedly varied
from 5 to 30. This was repeated through a number of
different combinations of the learning and momentum
rates. After over 5000 additional simulations, we found
the following optimal architecture, training parameters,
and training data time horizon:

We tested feedforward network with parameters in
Table 1 over a set of 100 simulation using a set of vali-
dation data. Fig. 5 presents the training results of 16
such simulations. The results show that the trained

Table 1
Optimum training parameters

Learning Momentum  Training # of hidden  Training data
rate (1) rate (u) epochs neurons horizon
0.7 0.7 2000 16 3 days

Note that these optimum # and u values are far from the ones used to
generate Figs. 3 and 4.
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Fig. 5. Feedforward neural network training results with optimal
setting.

neural network predicts electron concentration profiles
very close to the actual ones. Our simulation shows that
the optimal upper bound for the number of hidden neu-
rons is 30.

After training each of these 100 neural networks, a
simulation was performed in which the network was
used to perform actual 3-h in advance predictions on
real electron concentration profile measurements. For
these simulations the neural network free parameters
and architecture were fixed and provided with new input
parameters to test the performance. Fig. 6 shows the ac-
tual performance. As can be seen from the figure, the
feedforward neural network with optimal parameters
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Fig. 6. Feedforward neural network prediction vs. actual results.

predicts electron concentration profiles very close to
the actual ones.

5. Conclusions

Our study found that the simple feedforward neural
network was capable of providing reasonable forecasting
of the electron concentration profiles in the upper atmo-
sphere one step (3 h) into the future. The mean square
error of over 100 simulations with a fixed set of training
parameters, training data time horizon, and number of
hidden nodes was found to be 11.42*10~*. Our network
model was unsuccessful in forecasting electron concen-
tration profiles during unique geomagnetic disturbances
(i.e., solar flares, CME’s, etc.). We believe this is due to
the training method - the back-propagation training
algorithm used to adjust the weighted average of the in-
puts which smoothes the data over a time horizon. This
means, essentially, that any short-term/large-magnitude
disturbances a few standard deviations from the mean
would not affect the parameters.

We also found that the number of hidden neurons
has the greatest effect on the neural network’s perfor-
mance. Zhang et al. (2001) found, however, that in addi-
tion to the number of hidden nodes, the number of input
nodes had a significant effect on the neural network’s
predictive ability. They found that the number of input
nodes has a much stronger effect on the performance
than the number of hidden nodes in both in-sample fit
and out-of-sample forecasting. Therefore, recommenda-
tions for future study would be to include variable input
nodes during the performance evaluation simulations.

Additional future works include pre-process the ISR
measurements in finer time resolution to reveal details of
geomagnetic disturbances, to create neural network
models that can forecast disturbance behavior, and to
forecast multiple steps into the future. Recurrent type
of network model will be reinvestigated for forecasting
multi-steps into future. We would also like to continue
to analyze different neural network architectures, differ-
ent ranges of input and training data, along with analyz-
ing the performance of the network under various
conditions.
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