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a b s t r a c t

In this paper, we propose an alternative approach for flexible modeling of heavy tailed, skewed insurance
loss data exhibitingmultimodality, such as thewell-known data set on Danish Fire losses. Our approach is
based on finite mixture models of univariate distributions where all K components of the mixture are as-
sumed to be from the same parametric family. Sixmodels are developedwith components from paramet-
ric, non-Gaussian families of distributions previously used in actuarial modeling: Burr, Gamma, Inverse
Burr, InverseGaussian, Log-normal, andWeibull. Someof these component distributions are already alone
suitable tomodel datawith heavy tails, but do not cover the case ofmultimodality. Estimation of themod-
els with a fixed number of components K is proposed based on the EM algorithm using three different
initialization strategies: distance-based, k-means, and random initialization. Model selection is possible
using information criteria, and the fitted models can be used to estimate risk measures for the data, such
as VaR and TVaR. The results of the mixture models are compared to the composite Weibull models con-
sidered in recent literature as the best models for modeling Danish Fire insurance losses. The results of
this paper provide new valuable tools in the area of insurance loss modeling and risk evaluation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Modeling insurance losses is more art than science. Techniques
that sometimes work well for one data set may not be applicable
to another data set. An actuary needs to weigh many factors
surrounding the modeling such as risk management and pricing
decisions or impact on capital requirements. Recent literature on
the modeling of heavy tailed insurance loss data tends to focus
more on simple models based on single parametric distributions
and composite models (Bakar et al., 2015). Composite modeling
is also referred to as splicing (see Klugman et al., 2012). For these
models, estimation tools are in general already available, e.g., in the
open-source environment for statistical computing and graphics R
(R Core Team, 2015).

Limited literature exists on modeling insurance losses using
K -component finite mixture models from parametric, non-
Gaussian families of distributions exploring effective computa-
tional strategies. Notable exceptions are Lee and Lin (2010) and
Verbelen et al. (2015, 2016) who consider finite mixtures of
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Erlang distributions. In this paper, we present the flexible
finite mixture approach for modeling insurance losses using suit-
able parametric distributions, other than Erlang, for the com-
ponents focusing on distributions previously proposed in the
actuarial science. We show how the estimation with the expec-
tation–maximization (EM) algorithm and model selection can be
performed, and illustrate the results of this approach when ap-
plied to the well-known data set of Danish Fire losses. The Dan-
ish Fire data set is characterized as being heavy-tailed by Resnick
(1997) and McNeil (1997). These authors developed several statis-
tical plotting tools such as mean excess plot, QQ-plots, and the Hill
plot for accessing the tail behavior of Danish Fire losses. These tools
are available as part of the R package evir (Pfaff andMcNeil, 2012).

The insurance losses coming from different sources are
heterogeneous as reflected in multimodality, skewness, and heavy
tail distributions. Mixture models can be used to capture the
heterogeneity in the data and allow for the mixture components
to represent groups in the population. Given the different risk
assigned to each of the groups, augmenting the mixture model
with a concomitant model for the weights (Dayton and Macready,
1988) would allow classifying observations into these groups
and thus enable an improved risk evaluation. For these reasons,
modeling the insurance losses using K -component finite mixture
models is an appealing approach. In particular, the K -component
finite mixture models also allow for the flexibility to easily add
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additional components as compared to compositemodeling that is
limited to two distributions only. Ourmodeling approach based on
mixtures is contrasted with the approach proposed in the recently
published paper by Bakar et al. (2015) based on compositeWeibull
models, which so far was found to perform best for the Danish Fire
losses data set.

Different types of mixture models have been considered in
the literature. Keatinge (1999) proposed modeling losses with a
mixture of exponential distributions using maximum likelihood
(ML) estimation based on the Newton’s algorithm. While this
model is useful in some actuarial applications, the mode of this
model is at zero and the distribution is completely monotonic
(see Wang et al., 2006), which may result in a poor fit in the case
of modeling heavy-tail losses. Klugman and Rioux (2006) tried
to address this issue by proposing a flexible mixture model that
will include not only exponential components but also Gamma,
Log-normal and Pareto components with non-negative weights
that sum to one, with the restriction that either weight associated
with the Gamma or Log-normal component equals zero. While
this model allows for the existence of an interior mode with the
inclusion of a Gamma or Log-normal component, the number of
modes is still limited to at most three.

Lee and Lin (2010) proposedmodeling and evaluating insurance
losses via mixtures of Erlang distributions using the EM algorithm
for estimation. The components in the mixture from the Erlang
family were restricted to a common scale parameter to ease
estimation because it allows for an effective initialization of
the EM algorithm based on Tijms (1994) approximation. This
restriction was justified because this class is already dense in
the space of positive continuous distributions. However, it can be
assumed that restricting the scale parameter leads to mixtures
containing more components in order to achieve a suitable fit
than would be necessary in an unrestricted setting. Lee and
Lin (2010) showed that Log-normal, Gamma, and Generalized-
Pareto densities can be suitably approximated with these Erlang
mixtures, and they also demonstrated their proposed approach
on catastrophic loss data from the United States. Verbelen et al.
(2015) further extended the approach of fitting mixtures of Erlang
distributions with the EM algorithm to censored and truncated
data, using also the approximation by Tijms (1994) to initialize the
EM algorithm. Multivariate Erlang mixtures with a common scale
parameter are studied by Verbelen et al. (2016). They introduced
a computationally efficient initialization and adjustment strategy
iteratively used by the EMalgorithm for the estimation of the shape
parameter vectors, and their implementation of the EM algorithm
is publicly available in the form of R code.

We extend mixture modeling beyond the Erlang family for
the components and without imposing a restriction on any of
the parameters. Six finite mixture models are developed with
component-specific distributions from parametric, non-Gaussian
families: Burr, Gamma, Inverse Burr, InverseGaussian, Log-normal,
and Weibull. Estimation of all these models is possible using
the EM algorithm, and we consider three different initialization
strategies for the EM algorithm: distance-based, k-means, and
random initialization. We compare our results to the composite
models previously fitted to the same data sets and shown to
perform best on this data set by Bakar et al. (2015). Those models
use the Weibull distribution up to a threshold and a family of
transformed Beta distributions beyond the threshold for modeling
the heavy tail. Bakar et al. (2015) showed that composite models
based on Burr, Paralogistic, and Logistic distributions for the tail
fitted the real data better than those composite models based
on Log-normal, Pareto (Inverse Pareto), and Gamma distributions.
When comparing our results to those published by Bakar et al.
(2015) using the same real data set, we show that finite mixture
models may fit the data better than composite Weibull models, if
the component-specific parametric family is suitably chosen.
In Section 2, we introduce the models, describe the EM algo-
rithm for estimation, along with different initialization methods
and computational strategies, propose suitable model selection
criteria, and outline how risk measures can be calculated for these
models. In Section 3, we apply our methodology by fitting the fi-
nite mixtures with component distributions from the six different
parametric families to the well-known Danish Fire losses and dis-
cuss our findings. In the same section, we provide the results of the
simulation studies. Section 4 concludes.

2. Methodology

2.1. Problem setting

Let X = {X1, X2, . . . , Xn} be a sample of independent and
identically distributed random variables from a K -component
finite mixture of probability distributions. The mixture model in
parametric form is defined as

f (x|9) =

K
k=1

πkφk(x|θk), (2.1)

where 9 = (π′, θ′)′ = (π1, π2, . . . , πk, . . . , πK−1, θ
′

1, θ
′

2, . . . , θ
′

k,
. . . , θ′

K )′ is the vector of unknown parameters, πk denotes the
component weight of the kth component satisfying 0 < πk ≤ 1,
∀k ∈ {1, . . . , K} and

K
k=1 πk = 1, and θk are the parameters

of the kth density function φk(·). We assume that the φk are
density functions that are absolutely continuous with respect to
the Lebesgue measure and are elements from the same univariate
parametric family with a d-dimensional parameter vector θk,
ℑ = {φk(·|θk), θk ∈ Θ ⊂ Rd

}. For a mixture as given in Eq.
(2.1), the component densities φk(·) are assumed to be from the
same parametric family and differ only in component parameters
θk. Six different density functions are considered: Burr, Gamma,
Inverse Burr, Inverse Gaussian, Log-normal, and Weibull. These
parametric distributions are commonly employed inmodeling loss
data and are thus used as basic building blocks to generate more
flexible distributions by incorporating them into the finite mixture
framework. Finite mixture distributions are well known for their
flexibility in modeling heterogeneous data.

For estimating these finite mixture models, first ML estimates
of the parameters can be obtained for a given K and parametric
family using the EM algorithm as proposed by Dempster et al.
(1977) and outlined in Section 2.2. Details regarding initialization
of the EM algorithm and computational strategies are described in
Sections 2.3 and 2.4. Then a suitable model can be selected based
on model selection criteria (see Section 2.5).

2.2. The EM algorithm and parameter estimation

The EM algorithm is an iterative method for finding the ML
parameter estimates of a given model and usually is employed
when the data is incomplete or has missing values. The method
exploits the fact that in general themaximization problem is easier
for the complete data than the incomplete data. Every iteration of
the EM algorithm consists of two steps: expectation (E-step) and
maximization (M-step).

In the finite mixture framework, the missing observations
correspond to the component identifiers. The density function
f (x|9) in Eq. (2.1) is referred to as the incomplete data densitywith
the associated log-likelihood ℓx(9) =

n
i=1 log f (xi|9).

For the implementation of the EM algorithm, the complete data
log-likelihood function is required.We consider a randomvector of
complete information C = (X, Z), where X represents a random
variable corresponding to the observed sample and Z = (Zik ∈

{0, 1}, i = 1, . . . , n, k = 1, . . . , K) is the set of latent random
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variables indicating for all observations from which component
they are. The complete data likelihood is defined as

Lc(9) =

n
i=1

K
k=1

(πkφk(xi|θk))
zik , (2.2)

where zik = 1 indicates that observation xi originated from com-
ponent k; otherwise, zik = 0. The logarithm of (2.2) is defined as
the complete data log-likelihood

ℓc(9) = log Lc(9) =

n
i=1

K
k=1

zik[log(πk) + log(φk(xi|θk))]. (2.3)

The E-step of the sth iteration consists of determining the con-
ditional expectation of (2.3) given the observed data and the cur-
rent parameter estimates at iteration s − 1. This means that the
expectation is taken with respect to the conditional posterior dis-
tribution of the latent data, zik, i = 1, . . . , n and k = 1, . . . , K ,
given the observed data xi, i = 1, . . . , n and the current param-
eter estimates 9(s−1). Because the complete data log-likelihood is
linear in the latent data and the linearity of taking expectations,
the expected complete data log-likelihood is obtained by replacing
the missing data with their expected values conditional on the ob-
served data and the current parameter estimates. These expected
values are given by

πik
(s)

= E[zik|xi, 9(s−1)
] =

πk
(s−1)φk


xi|θk

(s−1)
K

k′=1
πk′

(s−1)φk′

xi|θ

(s−1)
k′

 ,

for i = 1, . . . , n and k = 1, . . . , K . πik
(s) corresponds to the pos-

terior probability that xi comes from the kth mixture component,
calculated at the sth iteration of the EM algorithm. The result is re-
ferred to as Q -function given by

Q (9|9(s−1)) =

n
i=1

K
k=1

πik
(s)

[log(πk) + log(φk(xi|θk))].

Since the latent data only relate to Z , the E-step does not depend
on the form of density in ℑ; thus, it is the same for all six distri-
butions considered in this paper except for the density evaluations
required.

In the M-step, new estimates for π and θ are obtained by
maximizing the Q -function. This optimization problem can be
solved separately for π and for the parameter vector of each of
the components θk, thus leading to several different optimization
problems which, however, can be solved in closed form or at least
are rather low-dimensional.

The estimates of π are updated in the sth iteration by

π̂
(s)
k =

1
n

n
i=1

π
(s)
ik .

New estimates for θk are obtained by solving a weighted ML
estimation problem for each of the different component distribu-
tions, where the weights correspond to the a-posteriori probabil-
ities. When this weighted ML estimation problem can be solved
analytically in closed form, this step is in general easy to accom-
plish. Alternatively, numerical optimization methods can be used
to maximize the weighted log-likelihood. The following formulas
indicate how the component-specific parameter estimates θk can
be obtained in theM-step for the different distributions considered
in this paper.

Burr: X ∼ Burr(α, θ, γ )
The density function of the Burr distribution with two
shape parameters, α and γ , and a scale parameter θ , is
given by

f (x|α, θ, γ ) =
αγ

 x
θ

γ

x

1 +

 x
θ

γ α+1 ,

where x > 0, α > 0, θ > 0, and γ > 0.
Maximization of the Q -function with respect to α given
θ and γ , in the M-step, has a closed form solution given
by

α̂
(s)
k =

nπ̂ (s)
k

n
i=1

πik
(s) log

1 +


xi

θ̂
(s)
k

γ̂
(s)
k

 .

Estimates for θ and γ are obtained based on themarginal
weighted log-likelihoods, where α̂k as a function of θ̂k
and γ̂k is inserted, and numerical optimization using, for
example, the optim function from the base package stats
in R.

Gamma: X ∼ G(α, θ)
The density function of the Gamma distribution with
shape parameter α and a rate θ is given by

f (x|α, θ) =
θα

Γ (α)
x(α−1)e−xθ ,

where x > 0, α > 0, and θ > 0.
Maximization of the Q -function with respect to θ given
α, in the M-step, has a closed form solution given by

θ̂
(s)
k =

α̂
(s)
k π̂

(s)
k n

n
i=1

πik
(s)xi

.

The estimate for α is obtained based on the marginal
weighted log-likelihood, where θ̂k as a function of α̂k is
inserted, and numerical optimization.

Inverse Burr: X ∼ IBurr(τ , θ, γ )
The density function of the Inverse Burr distributionwith
shape parameters, τ and γ , and a scale parameter θ , is
given by

f (x|τ , θ, γ ) =
τγ

 x
θ

τγ

x

1 +

 x
θ

γ τ+1 ,

where x > 0, τ > 0, θ > 0 and γ > 0.
Maximization of the Q -function with respect to τ given
θ and γ , in the M-step, has a closed form solution given
by

τ̂
(s)
k =

nπ̂ (s)
k

n
i=1

πik
(s) log

1 +


θ̂
(s)
k
xi

γ̂
(s)
k

 .

The estimates for θ and γ are obtained based on the
marginalweighted log-likelihoods,where τ̂k as a function
of θ̂k and γ̂k is inserted, and numerical optimization.

Inverse Gaussian: X ∼ IG(µ, λ)
The density function of the Inverse Gaussian distribution
is given by

f (x|µ, σ) =


λ

2πx3
e
−

λ(x−µ)2

2µ2x ,

where x > 0, µ > 0, and λ > 0.
Maximization of the Q -function with respect to µ and λ
given µ, in the M-step, has a closed form solution given



390 T. Miljkovic, B. Grün / Insurance: Mathematics and Economics 70 (2016) 387–396
by

µ̂
(s)
k =

n
i=1

πik
(s)xi

nπ̂ (s)
k

and

λ̂
(s)
k =

nπ̂ (s)
k

n
i=1

πik
(s)


1
xi

−
1

µ̂
(s)
k

 .

Log-normal: X ∼ LN(µ, σ 2)
The density function of the Log-normal distribution, with
location parameter,µ, and scale parameter, σ , is given by

f (x|µ, σ) =
1

xσ
√
2π

e
(log(x)−µ)2

2σ2 ,

where x > 0 and σ > 0.
Maximization of the Q -function with respect to µ and σ
given µ, in the M-step, has a closed form solution. These
are given by

µ̂
(s)
k =

n
i=1

πik
(s) log(xi)

n
i=1

πik
(s)

and

(σ̂ 2
k )(s) =

n
i=1

πik
(s)


log(xi) − µ̂

(s)
k

2
n

i=1
πik

(s)
.

Weibull: X ∼ W (α, θ)
The density function of the Weibull distribution with
shape parameter, α, and scale parameter, θ , is given by

f (x|α, θ) =

α

θ

  x
θ

(α−1)
e−( x

θ )
α

,

where x > 0, α > 0, and θ > 0.
Estimates forα and θ are obtained based on theweighted
log-likelihoods and numerical optimization.

In each iteration, the quantities computed in the E-step and M-
step are updated until the algorithm converges. The EM algorithm
has been shown to increase the log-likelihood values in each
iteration thus ensuring convergence in the case of bounded log-
likelihoods, even though convergence is not necessary to the global
optimum. A suitable stopping criterion is thus to use the relative
increase in the log-likelihood function and stop the algorithm if
this is smaller than some small pre-specified tolerance value.

2.3. Initialization of the EM algorithm

Because the point to which the EM algorithm converges
depends on the initial values, but does not necessarily need
to be the global optimum, a good choice of initial values or a
good initialization procedure trying out different initial values is
crucial in order to ensure that the global optimum is detected.
Considering that the likelihood function of finite mixtures is
usually multimodal and the EM algorithm is a climbing procedure,
an efficient initialization method is important when seeking to
find a global maximizer or the best local maximizer in case of
an unbounded likelihood function. We consider three different
initialization strategies for parameter estimation: (1) Euclidean
distance-based, (2) k-means, and (3) Random initialization. One of
the objectives of this paper is to compare these three methods in
finding good solutions by comparing the best solution found with
each of the methods and determining which one can most often
find the solution with the highest log-likelihood value.

Each of the initialization methods aims at determining a
partition of the data for initializing the EM algorithm.

Euclidean distance-based initialization: This initialization met-
hod relies on a measure of distance between cluster
centers randomly selected from the data and the observa-
tions. The cluster centers are obtainedby randomlydraw-
ing observations from the data; then a partition of the
data is derived by assigning each observation to the clos-
est cluster center based on the Euclidean distance. Maitra
(2009) proposed a similar stochastic initialization proce-
dure called RndEM for fitting Gaussian mixtures.

k-means: This initialization strategy is based on the results
of a partitioning algorithm that aims at obtaining a
partition that optimizes the k-means criterion proposed
by Forgy (1965) and MacQueen (1967), i.e., the partition
that minimizes the squared Euclidean distance between
the observations and their associated cluster centers
is selected. The k-means algorithm is one of the most
popular methods used in cluster analysis.

Random initialization: McLachlan and Peel (2000) proposed
random initialization for Gaussian mixture modeling.
This initialization strategy is based on random partition-
ing of the data into K groups by randomly drawing with
equal probability a value from {1, . . . , K} to assign to
each of the n observations.

2.4. Computational strategies

Two potential issues may arise when fitting the proposed
mixtures with the EM algorithm: (1) unbounded likelihoods and
(2) spurious solutions. An unbounded likelihood problem is related
to the issue when there exists a path in the parameter space along
which the likelihood goes to infinity and ML estimation breaks
down. If a mixture component contains very few observations and
has only a small scale parameter relative to the other components,
then it is referred to as a spurious component. These degenerate
solutions usually have higher log-likelihood values than those
associatedwith other local maxima, and theymay be selected over
competing solutions. In order to reduce the risk to end up on a
path leading to an unbounded likelihood and to eliminate spurious
solutions, any initial partition that contains less than 1% of the data
is disregarded and only partitionsmeeting this size criterion on the
components are used to initialize the EM algorithm.

In the empirical application using the Danish Fire losses and
the simulation studies, each initialization strategy is run 100 times
and the best solution, as indicated by themaximum log-likelihood,
is retained. This best solution provides the initial partition for
starting the EM algorithm. The EM algorithm is stopped when the
relative difference in log-likelihood values is smaller than 10−6 or
the maximum number of iterations of 1000 is reached.

2.5. Model selection

For modeling goodness-of-fit of the proposed models, we
consider the following measures: negative log-likelihood (NLL),
Akaike Information Criterion (AIC), and Bayesian Information
Criterion (BIC).

The negative log-likelihood measure is used to compare the
models with the same number of parameters. Let ℓ(θ) denote the
log-likelihood function for a given model, then NLL is defined by

NLL = −ℓ(θ).
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In the case of mixture modeling, if the number of components
increases, the value of the log-likelihood will improve so that the
log-likelihood values as a function of K will be monotonically
increasing and thus NLL is only a suitable measure to compare
models of the same complexity, i.e., with the same number of
parameters.

Comparing models with a different number of parameters
requires criteria that penalize the log-likelihood values by adding
a term that increaseswith the number of parameters and that aims
at balancing model fit with model complexity.

The Akaike Information Criterion (AIC) is a popular model
selection procedure proposed by Akaike (1974). The AIC considers
twice the negative log-likelihood plus a penalty term that is equal
to twice the number of free parameters (p) in the model, i.e.,

AIC = −2ℓ(θ) + 2p.

Themodelwith theminimumAIC value is selected as the preferred
model to fit the data.

The Bayesian Information Criterion (BIC), proposed by Schwarz
(1978), is another commonly used method in model selection.
Similar to AIC, the BIC approach adjusts the log-likelihood by a
penalty term that considers the number of observations (n) in the
sample in addition to the number of parameters in the model, i.e.,

BIC = −2ℓ(θ) + p log(n).

Themodel with theminimum BIC is chosen as the best model to fit
the data. The BIC is often preferred in finite mixture modeling (for
a discussion, see for example Fraley and Raftery, 2002).

2.6. Risk measures

Following the notation by Klugman et al. (2012), let X denote a
random variable and πp is the 100p quantile of the distribution of
X . The Value-at-Risk for a random variable X , denoted as VaRp(X),
is the same as πp and satisfies

P(X > πp) = 1 − p. (2.4)

In the case of finite mixtures, VaRp(X) does not have a closed
form solution and requires a numerical solution of the following
equation

FX (πp) = p, (2.5)

where FX represents the cumulative distribution function of X . This
can, for example, be done in R using the function uniroot() from the
base package stats.

For a random variable X , the Tail-Value-at-Risk, denoted as
TVaRp(X), is the conditional expectation of X given that X exceeded
the 100p quantile of the distribution, i.e.,

TVaRp(X) = E(X |X > πp) =


∞

πp
xf (x) dx

1 − FX (πp)
=


∞

πp
xf (x) dx

1 − p
. (2.6)

The conditional expectation satisfies the ‘‘linearity’’ property
as discussed by Ross (2014). Thus, it follows that the TVaRp(X)
for a mixture will be computed as the weighted sum of the
TVaRp(X) of each of the component distributions. The weights,
which correspond to the mixing probabilities, are part of the
parameters estimatedwith the EMalgorithm.All formulas for TVaR
have closed form solutions.

3. The analysis

3.1. Data

In this paper,weuse awell-knowndata set onDanish Fire losses
that has been analyzed by many researchers for more than two
decades. The data were collected by Copenhagen Reinsurance and
consist of 2492 records over the period 1980–1990. The losses are
in millions of Danish Krone and are not adjusted for inflation over
time.

Early studies on Danish Fire losses focused on extreme value
theory for heavy tailed distributions, e.g., McNeil (1997) and
Resnick (1997). Since 2005, there is an increasing trend in
developing composite models. At this point, modeling Danish
Fire losses using composite models is fairly comprehensive and
exhaustive. Coorey and Ananda (2005) introduced a composite
Log-normal-Pareto model. Their model is composed of a Log-
normal density up to an unknown threshold and a two-parameter
Pareto beyond the threshold. This composition is justified because
the Pareto model fits well the upper long tail of the distribution
that reflects larger losses with smaller frequency while the Log-
normal model fits well the smaller losses with higher frequency
of occurring. Conditions are imposed on the model parameters to
ensure continuity and differentiability at the threshold point.

Scollnik (2007) extended the research on composite Log-
normal-Pareto models by recognizing the limitations of the model
by Coorey and Ananda (2005) due to its fixed mixing weights. It
was argued that this model can be interpreted as a two component
mixturemodelwith fixed and a priori knownweights, thusmaking
this model rather restrictive and less attractive in practice. The
alternative two composite models proposed by Scollnik (2007)
included Log-normal-Pareto with mixing weights that were not
fixed a priori and the Log-normal-Pareto (Type II) model. Further
extensions in this stream of research on composite models were
proposed by Pigeon and Denuit (2011), who introduced the
threshold value as a random variable in existing Log-normal-
Pareto composite models, Nadarajah and Bakar (2014), who
suggested a composite Log-normal-Burr model, and Scollnik and
Sun (2012), who introduced several composite Weibull–Pareto
models formodeling loss severity and other forms of actuarial data.

The Danish Fire losses data set, danish, was obtained from
the SMPracticals package (Davison, 2013) in R. This data set
shares many common characteristics with loss insurance data
in general such as a heavy right tail and skewness. The basic
summary statistics include: 0.3134 (minimum), 1.1572 (first
quartile), 3.0630 (mean), 1.6339 (median), 2.6455 (third quartile),
and 263.2504 (maximum). We can observe that the mean is much
higher than the median as well as the third quartile, indicating
extreme skewness in the right tail of the distribution. This is also
confirmed by the high value of the skewness coefficient, which
equals 19.88. Fig. 1 shows the histogram of the data with the top
five extreme losses in the right tail indicated by the arrows.

Actuaries are seeking to fit the best model to this loss data. The
best models are praised for their good fit not only in the body,
but also in the tail of the distribution. They are selected based on
goodness-of-fit criteria such as AIC, BIC, or the log-likelihood. Once
the parameters of the best fitting model are determined, these
models are employed in a wide range of actuarial applications.
Pricing, evaluating risk measures (e.g., value-at-risk or conditional
tail expectation), and assessing optimal reinsurance retention
levels represent just a few areas of applications. We consider
modeling the Danish Fire losses data set using the six mixture
models previously introduced.

3.2. Results

In this section we present our results in comparison to the
results of the best composite models previously published in the
literature as well as a composite Weibull–Burr mixture, i.e., a mix-
ture model consisting of two components where one component
follows aWeibull distribution and the other component a Burr dis-
tribution. Estimation of the mixing probabilities and component-
specific parameters of the compositeWeibull–Burr mixture model
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Fig. 1. Danish Fire losses.

is also possible based on the EM algorithm. Given that the M-
step has been derived for mixtures ofWeibull distributions as well
as mixtures of Burr distributions, the extension of the EM algo-
rithm to the case of the composite Weibull–Burr mixture model
is straightforward: In the E-step, only the suitable component dis-
tribution needs to be evaluated, but this step remains unchanged
otherwise. In the M-step, the parameters of each component are
determined independently for all considered mixture models. In
the case of the composite Weibull–Burr mixture, for each compo-
nent the component-specific M-step of the corresponding distri-
bution needs to be performed. The details on the implementation
of the EM algorithm for the composite Weibull–Burr mixture are
included in the Appendix.

The top portion of Table 1 shows the NLL, AIC, and BIC results
of the three best-fitting Weibull composite models reported by
Bakar et al. (2015) for modeling Danish Fire losses. Below the com-
posite models, Table 1 includes the NLL, AIC, and BIC results of
the composite Weibull–Burr mixture. The BIC result for the com-
posite Weibull–Burr mixture is lower than the BIC value of the
composite Weibull–Burr model, indicating that the Weibull–Burr
mixture provides a better fit to the data. The bottom portion of
Table 1 shows how the NLL, AIC, and BIC change for the differ-
ent mixture models with varying number of mixture components
K fitted using our proposed methodology. The results are based
on the best model detected over the three different initializa-
tion strategies. The results for the optimal number of components,
based on BIC, are presented in bold for each model. The models
are shown for each component distribution up to this best model
plus the model with one component more, while all models with
1 to 8 components were fitted. The 2-component mixture with
a Burr distribution in the components has the lowest BIC value,
followed by the 3-component Inverse Burr mixture with the sec-
ond lowest BIC value, and the 5-component Log-normal mixture
with the third smallest BIC value. The 2-component Burr mix-
ture has lower NLL, AIC, and BIC values when compared to the
best three Weibull composite models published by Bakar et al.
(2015): Weibull–Burr, Weibull-Loglogistic, Weibull-Inverse Paral-
ogistic. The 2-component Burr mixture also has a lower BIC value
than the composite Weibull–Burr mixture. The parameters of the
top three mixture models are summarized in Table 2. Densities for
the top three models are shown in Fig. 2. The dashed lines corre-
spond to the weighted individual component densities, while the
full line is the overall mixture density. For example, the top panel
of Fig. 2 shows the 2-component Burr mixture, with individual
Table 1
Models used in modeling Danish Fire losses.

Table 2
Danish Fire losses: Parameter estimates for the best mixture models.

weighted Burr components depicted with dashed lines and overall
mixture depicted by the full line.

Table 3 summarizes the results for the risk measures. The
empirical VaR compares well with the theoretical estimates for
the Danish Fire losses data. For the best mixture based on the
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Fig. 2. The three best-fitting mixture models characterized by their mixture
densities (full lines) as well as weighted component densities (dashed lines) fitted
to the Danish Fire losses data set.

Burr distribution, the relative difference between empirical and
theoretical VaR is 1.7%. The second smallest relative difference of
4.2% can be observed for the Inverse Burr mixture. The relative
difference reported by Bakar et al. (2015, p. 152) for the composite
Weibull–Burr model was 2.3%.

Due to high skewness in the tail of the distribution, the
theoretical TVaR is expected to be different from the empirical
result. The result for the two component Burr mixture is similar
to the result reported by Bakar et al. (2015) for the composite
Weibull–Burr model since a Burr component, in both modeling
approaches, is used to model the tail of the distribution. The
Table 3
Danish Fire losses: Summary of risk measures.

Inverse Burr mixture has the smallest relative difference of 7.4%
in TVaR among the top threemodels that we selected for modeling
Danish Fire losses data. In addition, the composite mixture model
returns the highest value for the TVaR, which is observed in
combination with one of the highest theoretical VaR values and
which considerably exceeds the empirical TVaR.

Table 4 summarizes the results of three goodness-of-fit
tests for the top three mixture models. These tests are: Kol-
mogorov–Smirnov, Anderson–Darling, and Chi-Square tests (com-
pare, for example, Lee and Lin, 2010). The test statistic for each test
is presented with its corresponding p-value given in parentheses.
The results of all three goodness-of-fit tests indicate that the fitted
distributions are an appropriate representation of the population,
as hypothesized under the null hypothesis; in none of the tests the
null hypothesis is rejected at a 5% significance level. Fig. 3 shows
the QQ- and PP-plots for the top three fitted mixture models, indi-
cating also a very good fit for nearly all observations in the data set.
Overall, these diagnostic tools provide additional evidence that the
proposed methodology provides a good fit for the Danish fire data
if suitable mixture models are selected.

A comparison of the initialization methods was done for Dan-
ish Fire losses on the basis of comparing the best log-likelihood
values obtained over all repetitions. A basic statistical summary
is determined for the relative differences between the optimal
log-likelihood value obtained over all three initialization methods
and the best log-likelihood value for each initialization method
for each mixture model and number of components K ≥ 2. This
comparison indicates that the Euclidean distance-based initializa-
tion method performs best, followed by random initialization, and
k-means. The Euclidean distance-based initialization method ob-
tained the best solution 57% of the time, followed by random ini-
tialization with 30%, and k-means initialization with 13%. Even
if the Euclidean distance-based initialization method did not ob-
tain the best solution among the three initialization methods, only
slightly worse results were obtained with the relative maximum
deviation detected in comparison to the best log-likelihood value
obtained being less than 0.8%. By comparison, thesemaximum rel-
ative deviations are 3.2% for the random initialization method and
3.5% for the k-means initialization method.

3.3. Simulation study

In this section we provide the experimental validation of the
proposedmethod based on a simulation study. Because finite mix-
tures of distributions are known to be a flexible tool for approxi-
mating arbitrary distribution functions in a semi-parametric way,
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Table 4
Results of goodness-of-fit tests with their test statistics (corresponding p-values in parentheses).
Fig. 3. QQ-plots (top row) and PP-plots (bottom row) for the best three mixture models.
we focus in the simulation study on investigating howwell the dif-
ferentmixture distributions are able to approximate data following
a distribution likely to be encountered in insurance applications
and how close these mixture distributions are for this kind of data.

The simulation study is designed to evaluate the performance
of fitting the six proposed mixture models to data from one of
the mixture of distributions considered in this paper. This means
data is sampled from six different mixture models, each having
a different component distribution and constituting a different
simulation setting. We simulated 50 samples from 2-component
mixtures from each of the parametric families investigated in
the paper. The size of each sample corresponds to the size of
Danish Fire loss data (2492 observations). The parameters of the 2-
componentmodels are based on the best-fitting solutions obtained
when modeling the Danish Fire loss data. The mixture models
drawn from thus aim at mimicking the same data distribution
induced by the Danish Fire losses data and can be assumed to
be rather close such that they can also be approximated well by
other mixture models. All six mixture models were fitted with the
EM algorithm used in combination with the three initialization
strategies to each data set with the number of components varying
from 1 to 6.

The BIC value is determined for each model fitted to the
different data sets and with the different parametric distributions
for the components. In addition, the BIC value is determined
for each data set and parametric distribution based on the true
mixture model, i.e., the mixture model with the parameter values
drawn from. This allows us to assess (1) if the estimation based
on the EM algorithm with the different initialization methods is
able to obtain similar or even better BIC values, which would
indicate that the suitable optimum was detected and (2) if a given
mixture model with a certain parametric component distribution
can also be approximatedwell by othermixturemodels andwhich
mixture models they are. Based on these BIC values, we compute
the relative difference, RDij′j

BIC , in BIC between the best fitting
model with the distribution for the components fixed and the
‘‘true’’ model as follows

RDij′j
BIC

=

[min
kl

(BIC ijkl
fit) − BIC ij′

true
]

BIC ij′
true ,

where i = 1, . . . , 50 represents the number of samples, j′ =

1, . . . , 6 denotes the six different distributions of the models
where the data is drawn from, j = 1, . . . , 6 denotes the six
different distributions of the models fitted, k = 1, . . . , 6 denotes
the number of components of the fitted models, and l = 1, 2, 3
denotes the initialization strategy index.

Further, the relative differences, RDi
VaR and RDi

TVaR, between the
fitted 2-component mixture model with the correct component
distribution and the true model on the basis of VaR and TVaR, are
computed as follows

RDij
VaR

=
VaRijl∗(i,j)

fit
− VaRij

true

VaRij
true ,

RDij
TVaR

=
TVaRijl∗(i,j)

fit
− TVaRij

true

TVaRij
true ,
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Table 5
Simulation results for true fitted versus true model.
Fig. 4. Relative difference in BIC between true model and best fitting model for
each of the different parametric distributions in the components.

where i = 1, . . . , 50 denotes the number of data sets, j =

1, . . . , 6 the six parametric distributions and l∗(i, j) denotes the
initialization method giving the minimum BIC for data set i and
distribution j.

The mosaic plot in Fig. 4 shows how close the best fitting
distributions for each of the parametric distributions are to the true
model according to the BIC values. Darker color indicates smaller
RDij′j

BIC values, i.e., a stronger concordance between the best fitting
distribution and the true model. The mixtures with parametric
distributions Burr, Gamma, andWeibull are best fittedwithmodels
using the same parametric distribution in the components. When
Inverse Burr is the component distribution of the true model,
the best fitting distribution is Burr, followed by Inverse Burr.
Similarly, when Inverse Gaussian is the component distribution
of the true model, Inverse Gaussian and Log-normal are the best
fitting models. When Log-normal is the true model, Log-normal
and Inverse Gaussian are the best fitting distributions. However,
in the last three cases, the relative difference between the best
solutions and the solutions obtained for themodel with the correct
component distribution and number of components is only within
4.7%. These results indicate the flexibility of the mixture approach
in also approximating mixtures of other distributions. However,
the true model is only slightly outperformed and would thus
be nearly always included when, for example, the best three
models would be considered, an approach we pursue in the case
of modeling and interpreting the results of the Danish Fire losses.

Table 5 provides the summary (mean and standard deviation)
of the relative differences in BIC, VaR, and TVaR between the fitted
model with 2 components and the correct component distribution
and the true model the data is drawn from for the 50 data sets
and each distribution. The results for BIC indicate that in general
better results are obtained by fitting the model than if the true
parameter values are used to evaluate the log-likelihood. This
implies that the problem of having only local optima returned by
the EM algorithm seems to not be an issue for the initialization
methods employed. For VaR and TVaR the distributions of the
relative difference between the true fitted and the true model
are essentially all unbiased with a very small variability, with the
strongest deviations being observable for Burr distribution.

The comparison of the performance of the initialization
methods for the results obtained in the simulation study indicates
that again Euclidean-based initialization performs best in 41% of
the cases, followed by random initialization in 37% of the cases and
by k-means initialization in 22% of the cases.

4. Conclusion

In this paper, we proposed modeling insurance losses using
K -component finite mixture models. Estimation with the EM
algorithm is described and three initialization strategies for the EM
algorithm are compared: Euclidean distance-based, k-means, and
Random initialization. Six finite mixture models were developed
with component-specific distributions from parametric, non-
Gaussian families: Burr, Gamma, Inverse Burr, Inverse Gaussian,
Log-normal, and Weibull. Risk measures (VaR and TVaR) were
calculated for each mixture model. To our knowledge, this
approach is the first one to consider mixture modeling outside
of the non-Gaussian family of distributions for loss data without
imposing any restriction on the parameter estimates, while
considering different initialization strategies when fitting the
models using the EM algorithm. The methodology developed
in this paper is implemented using the statistical computing
environment R and is available in the R package flexmix (Grün and
Leisch, 2008).

Our results were compared to those of composite Weibull
models reported by Bakar et al. (2015) for modeling the Danish
Fire losses data set. We found that in the case of the Danish Fire
losses, 2-component Burr, followed by 3-component Inverse Burr,
and 5-component Log-normal mixtures are fitting better than the
top composite Weibull models reported by Bakar et al. (2015).
We also showed that the computation of risk measures based on
the mixture models is straightforward and provides reasonable
results compared to composite models. The heterogeneous nature
of the insurance claims makes mixture modeling an attractive and
flexible approach over composite models for modeling insurance
loss data. Our results imply that modeling insurance losses using
the K -component mixture of distributions can be effectively
employed as a new tool in the area of predictive modeling and risk
evaluation. A natural extension of this approach would be to allow
also for other parametric distributions in the components.

The flexibility of the mixture modeling approach to approxi-
mate general distribution functions has been shown. However, this
capability ofmixtures is also a drawbackwhenaiming at selecting a
single best fitting model. Thus, model uncertainty is an issue when
applying this approach and needs to be suitably dealt with. In our
empirical analysis, we addressed this problem by considering a set
of best fitting models, and we were thus able to obtain robust re-
sults by taking the results of all these similarly well-fitting models
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into account. An alternative approach to account for model uncer-
tainty and to deduce robust results would be to incorporate the
Bayesian model averaging (Hoeting et al., 1999) approach into the
mixture modeling framework.
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Appendix

A.1. The EM algorithm for the composite Weibull–Burr mixture

Consider a random variable X = (1 − δ)X1 + δX2, where X1 ∼

W (α1, θ1), X2 ∼ Burr(α2, θ2, γ ), δ ∈ {0, 1}, and P(δ = 1) = π .
The Weibull–Burr mixture is defined as

f (x|9) = (1 − π)fW (x|α1, θ1) + π f B(x|α2, θ2, γ ) (A.1)

with the parameter vector 9 = (π, α1, θ1, α2, θ2, γ ) and 0 <
π < 1. Distribution functions for Weibull and Burr are denoted
as fW (x|α1, θ1) and f B(x|α2, θ2, γ ), respectively. Consider the
unobserved latent variable zi for observation xi, where

zi =


0 if xi is from the Weibull component,
1 if xi is from the Burr component.

The complete data log-likelihood function where the observa-
tions xi are augmented with the latent variables zi is obtained as

ℓc(9) =

n
i=1


(1 − zi) log(π) + (1 − zi) log(fW (xi|α1, θ1))

+ zi log(1 − π) + zi log(f B(xi|α2, θ2, γ ))

.

At the sth iteration of the EM algorithm, taking the expectation of
ℓc(9) conditional on the observed data and the estimates from the
(s − 1)th iteration results in

Q (9|x; 9(s−1)) = E[ℓc(9)|x; 9(s−1)
]

=

n
i=1

(1 − π
(s)
i ) log(π) + (1 − π

(s)
i )

× log(fW (xi|α
(s−1)
1 , θ

(s−1)
1 ))

+ π
(s)
i log(1 − π) + π

(s)
i

× log(f B(xi|α
(s−1)
2 , θ

(s−1)
2 , γ (s−1))),

where π
(s)
i is the posterior probability that xi comes from the Burr

mixture component given the parameters estimates from iteration
s − 1 and is given by

πi
(s)

= E[zi|xi, 9(s−1)
]

=
π (s−1)f B


xi|α

(s−1)
2 , θ

(s−1)
2 , γ (s−1)


(1 − π (s−1))fW


xi|α

(s−1)
1 , θ

(s−1)
1


+ π (s−1)f B


xi|α

(s−1)
2 , θ

(s−1)
2 , γ (s−1)

 .

The posterior probability that xi comes from the Weibull mixture
component is given by 1 − πi

(s) in the E-step of the sth iteration.
The M-step consists of finding new estimates for 9 by
maximizing the Q -function. This maximization problem is solved
for π in closed form solution: at the sth iteration, the estimate is
given by π̂ (s)

=
1
n

n
i=1 πi

(s). The estimates of the component-
specific parameters in 9 are obtained at the sth iteration based
on weighted maximum likelihood estimation using numerical
optimization similar to mixtures of Weibull distributions and
mixtures of Burr distributions as discussed in detail in Section 2.2.
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