

College of Engineering & Computing

Towards the Realization of a DSML for Machine Learning:

A Baseball Analytics Use Case

Kaan Koseler & Matthew Stephan Miami University {koselekt, stephamd} @miamioh.edu

Type-Float

Name-Weights

Motivation	Details of Approach	Initial Example
 Building quality Machine Learning (ML) software is challenging Requires domain, ML, and software engineering knowledge 	 Plan on extending and applying proposed, but untested, DSML (Breuker, 2014) built on the Infer.NET C# library Implement code generation 	 Model instance uses count (# of balls and strikes) as a feature to predict the next pitch Contains three observed variable

//Make predictions on test data

public void BayesPointMachine(double[] strikes, double[] balls, Variable<Vector> w, VariableArray<bool> y)

// Create training data vector
Range j = y.Range;
Vector[] xVector = new Vector[balls.Length];
for (int i = 0; i < xVector.Length; i++)
 xVector[i] = Vector.FromArray(strikes[i], balls[i]);
VariableArray<Vector> x = Variable.Observed(xVector, j).Named("x");

// Bayes Point Machine, dot product of weights and feature vector
y[j] = Variable.GaussianFromMeanAndVariance(Variable.InnerProduct(w, x[j]).Named("dotProduct")) > 0;

double[] strikesTest = { 2, 1, 2 }; double[] ballsTest = { 3, 2, 0 }; VariableArray<bool> ytest = Variable.Array<bool>(new Range(strikesTest.Length)).Named("ytest"); BayesPointMachine(strikesTest, ballsTest, Variable.Random(wPosterior).Named("w"), ytest); Console.WriteLine("output=\n" + engine.Infer(ytest));

References

•Breuker, D.: Towards model-driven engineering for big data analytics—an exploratory analysis of domainspecific languages for machine learning. In: Hawaii International Conference on System Sciences. pp. 758–767 (2014)

•Ganeshapillai, G., Guttag, J.: Predicting the next pitch. In: Sloan Sports Analytics Conference (2012)

Acknowledgements

This work is supported by the Miami University Senate Committee on Faculty Research (CFR) Faculty Research Grants Program